Skip to main content

Analysis of the Kinetics of Antigen-Antibody Interactions and Fractal Dimension in Biosensors

  • Chapter
Biosensors and Their Applications
  • 430 Accesses

Abstract

Sensitive detection systems (or sensors) are required to distinguish a wide range of substances. Sensors find application in the areas of biotechnology, physics, chemistry, medicine, aviation, and environmental control. Biosensor systems have different operating parameters, including stability, specificity, response time, selectivity, and regenerability. A better understanding of the mode of operation of these parameters would lead to increasing biosensor performance efficiency. Separation or the detection of reactants can be performed by the solid-phase immunoassay technique (antibody—antigen reaction) or by immobilizing enzymes on appropriate surfaces (enzyme—substrate reaction). There is a need to characterize the reactions occurring at the biosensor surface by paying attention to both the reaction and the sensing element (surface).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bluestein BI, Craig M, Slovacek R, et al. Evanescent wave immunosensors for clinical diagnostics. In: Wise D and Wingard Jr. LB, eds. Biosensors with Fiberoptics. Totowa, NJ: Humana Press, 1991, pp 181–223.

    Chapter  Google Scholar 

  2. Eddowes MJ. Direct immunochemical sensing:basic chemical principles and fundamental limitations. Biosensors 1987/1988;3:1–15.

    Article  CAS  Google Scholar 

  3. Kopelman R. Fractal reaction kinetics. Science 1988;241:1620–1626.

    Article  PubMed  CAS  Google Scholar 

  4. Pfeifer P, Obert M. Fractals:basic concepts and terminology. In: Avnir D, ed. The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers. New York: John Wiley & Sons, 1989, pp 112–123.

    Google Scholar 

  5. Seri-Levy A, Avnir D. Fractal analysis of surface geometry effects on catalytic reactions. Surf Sci 1991;248:258–270.

    Article  CAS  Google Scholar 

  6. Sadana A, Beelaram A. A fractal analysis of antigen—antibody binding kinetics:biosensor applications. Biotechnol Progr 1994;10:291–298.

    Article  CAS  Google Scholar 

  7. Sadana A, Beelaram A. Antigen—antibody diffusion-limited binding kinetics of biosensors: a fractal analysis. Biosens Bioelectron 1995;10:310–316.

    Article  Google Scholar 

  8. Sadana A. Antigen—antibody binding kinetics for biosensors: the fractal dimension and the binding rate coefficient. Biotechnol Progr 1995;11:50–57.

    Article  CAS  Google Scholar 

  9. Sadana A, Sii D. The binding of antigen by immobilized antibody: influence of a variable rate coefficient on external diffusional limitations. J Colloid Interf Sci 1992;151(1):166–177.

    Article  CAS  Google Scholar 

  10. Sadana A, Sii D. Binding kinetics of antigen by immobilized antibody: influence of reaction order and external diffusional limitations. Biosens Bioelectron 1992;7:559–568.

    Article  PubMed  CAS  Google Scholar 

  11. Havlin S. Molecular diffusion and reaction. In: Avnir D, ed. The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers. New York: John Wiley & Sons, 1989, pp 251–269.

    Google Scholar 

  12. Piehler J, Brecht A, Gauglitz G. Affinity detection of low molecular weight analytes. Anal Chem 1996;68:139–143.

    Article  PubMed  CAS  Google Scholar 

  13. Sigmaplot (1993). Scientific Graphing Software, User’s Manual. Jandel Scientific, San Rafael, CA.

    Google Scholar 

  14. Domenici C, Schirone A, Celebre M, et al. Development of a TIRF immunosensor: modeling the equilibrium behavior of a competitive system. Biosens Bioelectron 1995;10:371–378.

    Article  CAS  Google Scholar 

  15. Liliom K, Lehotzky A, Molnar A, et al. Characterization of tubulin-alkaloid interactions by enzyme-linked immunosorbent assay. Anal Biochem 1995;228:18–26.

    Article  PubMed  CAS  Google Scholar 

  16. Correia JJ. Pharmacol Ther 1991;52:127–147.

    Article  PubMed  CAS  Google Scholar 

  17. Douglas JF. How does surface roughness affect polymer-surface interactions? Macromolecules 1989:22:3707–3716.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sadana, A. (2000). Analysis of the Kinetics of Antigen-Antibody Interactions and Fractal Dimension in Biosensors. In: Yang, V.C., Ngo, T.T. (eds) Biosensors and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4181-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4181-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6875-5

  • Online ISBN: 978-1-4615-4181-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics