Skip to main content

Introduction

  • Chapter
Near-Field Nano-Optics

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

  • 483 Accesses

Abstract

Near-field optics and photonics have been developed extensively in this decade mainly in relation to scanning optical near-field microscopy and related techniques. The underlying physics and potential for applications are, however, spreading into many areas dealing with the interaction of electromagnetic fields with matter. This book is intended to present the basic ideas involved in the rapidly expanding field of near-field optics and photonics to graduate students and researchers, using both experimental and theoretical materials based on original work of the authors. As a general introduction to near-field optics and photonics, we start with a consideration of the physics involved in general optical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and E. Wolf, Principles of Optics, 3rd ed., Pergamon Press, Oxford, 1965.

    Google Scholar 

  2. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett. 56: 792–795 (1986).

    Article  Google Scholar 

  3. A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe, Single-and double-slit diffraction of neutrons, Rev. Mod. Phys. 60: 1067–1073 (1988).

    Article  Google Scholar 

  4. O. Carnal, M. Siegel, T. Sleator, H. Takuma, and J. Mlynek, Imaging and focusing of atoms by a Fresnel zone plate, Phys. Rev. Lett. 67: 3231–3234 (1991).

    Article  Google Scholar 

  5. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl Phys. Lett. 40: 178–180 (1982).

    Article  Google Scholar 

  6. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49: 57–61 (1982).

    Article  Google Scholar 

  7. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, 7×7 reconstruction on Si(l11) resolved in real space, Phys. Rev. Lett. 50: 120–123 (1983).

    Article  Google Scholar 

  8. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, Oxford, 1993.

    Google Scholar 

  9. H. J. Güntherodt and R. Wiesendanger, eds., Scanning Tunneling Microscopy I, 2nd ed., Springer-Verlag, Berlin, 1994.

    Google Scholar 

  10. R. Wiesendanger and H. J. Güntherodt, eds., Scanning Tunneling Microscopy II, 2nd ed., Springer-Verlag, Berlin, 1995.

    Google Scholar 

  11. R. Wiesendanger and H. J. Güntherodt, eds., Scanning Tunneling Microscopy HI, 2nd ed., Springer-Verlag, Berlin, 1996.

    Book  Google Scholar 

  12. J. Bardeen, Tunneling from a many-particle point of view, Phys. Rev. Lett. 6: 57–59 (1961).

    Article  Google Scholar 

  13. D. W. Pohl and D. Courjon, eds., Near Field Optics, Kluwer, Dordrecht, 1993.

    Google Scholar 

  14. G. Massey, Microscopy and pattern generation with scanned evanescent waves, Appl. Opt. 23: 658–660 (1984).

    Article  Google Scholar 

  15. D. W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/20, Appl. Phys. Lett. 44: 651–653 (1984).

    Article  Google Scholar 

  16. U. Ch. Fischer, Optical characteristics of 0.1 μm circular aperture in a metal film as a light sources for scanning ultramicroscopy, J. Vac. Sci. Technol. B3: 386–390 (1985).

    Google Scholar 

  17. U. Dürig, D. W. Pohl, and F. Rohner, Near-field optical-scanning microscopy, J. Appl. Phys. 59: 3318–3327 (1986).

    Article  Google Scholar 

  18. E. Betzig, M. Isaacson, and A. Lewis, Collection mode near-field scanning optical microscopy, Appl. Phys. Lett. 51: 2088–2090 (1987).

    Article  Google Scholar 

  19. D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, External and internal reflection near field microscopy: Experiments and results, Appl. Opt. 29: 3734–3740 (1990).

    Article  Google Scholar 

  20. R. C. Reddick, R. J. Warmack, and T. L. Ferrel, New form of scanning optical microscopy, Phys. Rev. B 39: 767–770 (1989).

    Article  Google Scholar 

  21. J. M. Guerra, Photon tunneling microscopy, Appl. Opt. 29: 3741–3752 (1990).

    Article  Google Scholar 

  22. S. Jiang, N. Tomita, H. Ohsawa, and M. Ohtsu, A photon scanning tunneling microscope using an AlGaAs laser, Jpn. J. Appl. Phys. 30: 2107–2111 (1991).

    Article  Google Scholar 

  23. C. J. Chen, Attractive interatomic force as a tunneling phenomenon, J. Phys. Condens. Matter 3: 1227–1245 (1991).

    Article  Google Scholar 

  24. E. A. Synge, A suggested method for extending microscopic resolution into the ultra-microscopic region, Phil. Mag. 6: 356–362 (1928).

    Google Scholar 

  25. J. A. O’Keefe, Resolving power of visible light, J. Opt. Soc. Am. 46: 359 (1956).

    Article  Google Scholar 

  26. E. Ash and G. Nicholls, Super-resolution aperture scanning microscope, Nature 237: 510–512 (1972).

    Article  Google Scholar 

  27. M. Fee, S. Chu, and T. W. Hänsch, Scanning electromagnetic transmission line microscope with sub-wavelength resolution, Opt. Commun. 69: 219–224 (1989).

    Article  Google Scholar 

  28. F. Keilmann, Laser-driven corrugation instability of liquid metal surfaces, Phys. Rev. Lett. 51: 2097–2100 (1983).

    Article  Google Scholar 

  29. F. Keilmann, K. W. Kussmaul, and Z. Szentirmay, Imaging of optical wavetrains, Appl. Phys. B 47: 169–176 (1988).

    Article  Google Scholar 

  30. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope, Jpn. J. Appl. Phys. 31: L1302–L1304 (1992).

    Article  Google Scholar 

  31. S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai, Nanometric scale biosample observation using a photon scanning tunneling microscope, Jpn. J. Appl. Phys. 31: 2282–2287 (1992).

    Article  Google Scholar 

  32. M. Naya, R. Micheletto, S. Mononobe, R. Uma Mahesuwari, and M. Ohtsu, High resolution near-field optical imaging of biological samples in water with optical feedback control, Appl. Opt. 36: 1681–1683 (1997).

    Article  Google Scholar 

  33. T. Pangaribuan, S. Jiang, and M. Ohtsu, Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope, Electron. Lett. 29: 1978–1979 (1993).

    Article  Google Scholar 

  34. S. Mononobe and M. Ohtsu, Fabrication of pencil-shaped fiber probe for near-field optics by selective chemical etching, J. Lightwave Technol. 14: 2231–2235 (1996).

    Article  Google Scholar 

  35. S. Mononobe, T. Saiki, M. Naya, and M. Ohtsu, Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics, Appl. Opt. 36: 1496–1500 (1997).

    Article  Google Scholar 

  36. H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66: 163–182 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  37. C. J. Bowkamp, Diffraction theory, Rep. Progr. Phys. 17: 35–100 (1954).

    Article  Google Scholar 

  38. Y. Leviatan, Study of near-zone fields of a small aperture, J. Appl. Phys. 60: 1577–1583 (1986).

    Article  Google Scholar 

  39. A. Roberts, Small-hole coupling of radiation into a near-field probe, J. Appl. Phys. 70: 4045–4049 (1991).

    Article  Google Scholar 

  40. J. M. Vigoureux, F. Depasse, and C. Girard, Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves, Appl. Opt. 31: 3036–3045 (1992).

    Article  Google Scholar 

  41. C. Girard and M. Spajer, Model for reflection near field optical microscopy, Appl. Opt. 29: 3726–3733 (1990).

    Article  Google Scholar 

  42. J. M. Vigoureux, C. Girard, and D. Courjon, General principle of scanning tunneling optical microscopy, Opt. Lett. 14: 1039–1041 (1989).

    Article  Google Scholar 

  43. B. Labani, C. Girard, D. Courjon, and D. Van Lebeke, Optical interaction between a dielectric tip and a nanometric lattice: Implications for near-field microscopy, J. Opt. Soc. Am. B 7: 936–943 (1990).

    Article  Google Scholar 

  44. O. J. F. Martin, C. Girard, and A. Dereux, Generalized field propagator for electromagnetic scattering and light confinement, Phys. Rev. Lett. 74: 526–529 (1995).

    Article  Google Scholar 

  45. B. Chen and D. F. Nelson, Wave-vector-space method for wave propagation in bounded media, Phys. Rev. B 48: 15365–15371 (1993).

    Article  Google Scholar 

  46. Z. Zhang and S. Satpathy, Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations, Phys. Rev. Lett. 65: 2650–2653 (1990).

    Article  Google Scholar 

  47. D. Maystre, A new kind of surface wave: The localiton, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 367–376.

    Chapter  Google Scholar 

  48. H. Hori, Quantum optical picture of photon STM and proposal of single atom manipulation, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 105–114.

    Chapter  Google Scholar 

  49. K. Cho, Nonlocal theory of radiation-matter interaction: Boundary-condition-less treatment of Maxwell equations, Progr. Theor. Phys. Suppl. 106: 225–233 (1991).

    Article  Google Scholar 

  50. K. Cho, Y. Ohfuti, and K. Arima, Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory, Jpn. J. Appl. Phys. 34: 267–270 (1994).

    Google Scholar 

  51. U. Ch. Fischer and D. W. Pohl, Observation of single-particle plasmon by near-field optical microscopy, Phys. Rev. Lett. 62: 458–461 (1989).

    Article  Google Scholar 

  52. M. Specht, J. D. Pedaring, W. M. Heckl, and T. W. Hänsch, Scanning plasmon near-field microscope, Phys. Rev. Lett. 68: 476–479 (1992).

    Article  Google Scholar 

  53. P. Dawson, F. de Fornel, and J.-P. Goudonnet, Imaging of surface plasmon propagation and edge interaction using aphoton scanning tunneling microscope, Phys. Rev. Lett. 72: 2927–2930 (1994).

    Article  Google Scholar 

  54. T. Saiki, S. Mononobe, and M. Ohtsu, Nanometric integrating tip: Enhanced sensitivity of fluorescence detection in photon STM, in Technical Digest, Quantum Electronics and Laser Science Conference, Baltimore, 1995, pp. 84–85.

    Google Scholar 

  55. R. Kopelman, W. Tan, Z.-Y Shi, and D. Birnbaum, Near field optical and exciton imaging, spectroscopy and chemical sensors, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 17–24.

    Chapter  Google Scholar 

  56. R. Uma Maheswari, H. Tatsumi, Y. Katayama, and M. Ohtsu, Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope, Opt. Commun. 120: 325–334 (1995).

    Article  Google Scholar 

  57. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, Statially-resolved photoluminescence spectroscopy of lateral p-n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope, Appl Phys. Lett. 67: 2191–2193 (1995).

    Article  Google Scholar 

  58. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, and K. West, Optical spectroscopy of a GaAs/A1GaAs quantum wire structure using near-field scanning optical microscopy, Appl Phys. Lett. 64: 1421–1423 (1994).

    Article  Google Scholar 

  59. U. Mohideen, M. J. Yoo, H. Hess, W. S. Hobson, F. Ren, R. Kopf, and R. E. Slusher, GaAs/AlGaAs quantum-dot near-field scanning optical microscopy, Tech. Digest Quantum Electron. Laser Sci. 16: 85 (1995).

    Google Scholar 

  60. E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl Phys. Lett. 60: 2484–2486 (1992).

    Article  Google Scholar 

  61. R. Toledo-Crow, P. C. Yang, Y Chen, and M. Vaez-Iravani, Near-field differential scanning optical microscope with atomic force regulation, Appl Phys. Lett. 60: 2957–2959 (1992).

    Article  Google Scholar 

  62. M. Abe, T. Uchihashi, M. Ohta, H. Ueyama, Y. Sugawara, and S. Morita, Measurement of evanescent field using noncontact mode atomic force microscopy, Opt. Rev. 4: 232–235 (1997).

    Article  Google Scholar 

  63. J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig, Near-field spectroscopy of single molecules at room temperature, Nature 369: 40–42 (1994).

    Article  Google Scholar 

  64. W. P. Ambrone, P. M. Goodwin, J. C. Martin, and R. A. Keller, Single molecule detection and photochemistry on a surface using near-field optical excitation, Phys. Rev. Lett. 72: 160–163 (1994).

    Article  Google Scholar 

  65. X. S. Xie and R. C. Dunn, Probing single molecule dynamics, Science 265: 361–364 (1994).

    Article  Google Scholar 

  66. E. Betzig, J. K. Trautmann, R. Wolfe, E. M. Gyorgy, P. L. Finn, N. H. Kryder, and C.-H. Chang, Near-field magneto-optics and high density data strage, Appl. Phys. Lett. 61: 142–144 (1992).

    Article  Google Scholar 

  67. S. Jiang, J. Ichibashi, H. Monobe, M. Fijihira, and M. Ohtsu, Highly localized photochemical process in LB films of photochromic material by using a photon scanning tunneling microscope, Opt. Commun. 106: 173–177 (1994).

    Article  Google Scholar 

  68. B. D. Terris, H. J. Mamin, and D. Rugar, Near-field optical data storage, Appl Phys. Lett. 68: 141–143 (1996).

    Article  Google Scholar 

  69. S. Hosaka, T. Shintani, Y. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kramer, Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode, Jpn. J. Appl Phys. 35: 443–447 (1996).

    Article  Google Scholar 

  70. S. Kawata and T. Sugiura, Movement of micrometer-sized particles in the evanescent field of a laser beam, Opt. Lett. 16: 772–774 (1992).

    Article  Google Scholar 

  71. F. Depasse and D. Courjon, Inductive force generated by evanescent light fields: Application to local probe microscopy, Opt. Commun. 87: 79–83 (1992).

    Article  Google Scholar 

  72. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution, Nature 374: 555–559 (1995).

    Article  Google Scholar 

  73. V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, and A. I. Sidorov, Quantum-state-selective mirror reflection of atoms by laser light, Phys. Rev. Lett. 60: 2137–2140 (1988).

    Article  Google Scholar 

  74. H. Hori, S. Jiang, M. Ohtsu, and M. Ohsawa, A nanometric-resolution photon scanning tunneling microscope and proposal of single atom manipulation, in Technical Digest of the 18th International Quantum Electronics Conference, Vienna, June 1992, Vol. 9, pp. 48–49.

    Google Scholar 

  75. C. G. Aminoff, A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji, Cesium atoms bouncing in a stable gravitational cavity, Phys. Rev. Lett. 71: 3083–3086 (1993).

    Article  Google Scholar 

  76. W. Seifert, C. S. Adams, V. I. Balykin, C. Heine, Yu. Ovchinnikov, and J. Mlynek, Reflection of metastable argon atoms from an evanescent wave, Phys. Rev. A 49: 3814–3823 (1994).

    Article  Google Scholar 

  77. S. Feron, J. Reinhardt, M. Ducroy, O. Gorceix, S. Nic Chormaic, Ch. Miniatura, J. Robert, J. Baudon, V. Lorent, and H. Haberland, Doppler-tuned multiphoton resonances in an atom reflection by a standing evanescent wave, Phys. Rev. A 49: 4733–4741 (1994).

    Article  Google Scholar 

  78. M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Lethokov, Laser guiding of atoms in a hollow optical fiber, Opt. Commun. 98: 77–79 (1993).

    Article  Google Scholar 

  79. W. Jhe, M. Ohtsu, H. Hori, and S. R. Freiberg, Atomic waveguide using evanescent wave near optical fibers, Jpn. J. Appl Phys. 33: L1680–L1682 (1994).

    Article  Google Scholar 

  80. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Laser-guided atoms in hollow-core optical fibers, Phys. Rev. Lett. 75: 3253–3256 (1995).

    Article  Google Scholar 

  81. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers, Phys. Rev. Lett. 76: 4500–4503 (1996).

    Article  Google Scholar 

  82. C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York, 1986.

    Google Scholar 

  83. E. Yablonovitch and T. J. Gmitter, Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett. 63: 1950–1953 (1989).

    Article  Google Scholar 

  84. K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in a face-centered-cubic dielectric media, Phys. Rev. Lett. 65: 2646–2649 (1990).

    Article  Google Scholar 

  85. O. Costa De Beauregard, Ch. Imbert, and J. Ricard, Energy-momentum quanta in Fresnel’s evanescent wave, Int. J. Theor. Phys. 4: 125–140 (1971).

    Article  Google Scholar 

  86. J. P. Gordon, Radiation force and momenta in dielectric media, Phys. Rev. A 8: 14–21 (1973).

    Article  Google Scholar 

  87. D. F. Nelson, Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy, Phys. Rev. A 44: 3985–3996 (1991).

    Article  Google Scholar 

  88. R. Peierls, More Surprise in Theoretical Physics, Princeton University Press, Princeton, New Jersey, 1991, Sections 2.4–2.6, pp. 30–42.

    Google Scholar 

  89. M. Kristensen and J. P. Woerdman, Is photon angular momentum conserved in dielectric medium? Phys. Rev. Lett. 72: 2171 (1994).

    Article  Google Scholar 

  90. H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity, Phys. Rev. Lett. 75: 826–829 (1995).

    Article  Google Scholar 

  91. C. K. Carniglia, L. Mandel, and K. H. Drexhage, Absorption and emission of evanescent photons, J. Opt. Soc. Am. 62: 476–486 (1972).

    Article  Google Scholar 

  92. D. Suter, J. Äbersold, and J. Mlynek, Evanescent wave spectroscopy of sublevel resonances near a glass/vapor interface, Opt. Commun. 84: 269–274 (1991).

    Article  Google Scholar 

  93. M. Chevrollier, M. Fichet, M. Orisa, G. Rahmat, D. Bloch, and M. Ducloy, High resolution selective reflection spectroscopy as a probe of long-range surface interaction: Measurement of the surface van der Waals attraction exerted on excited Cs atoms, J. Phys. II France 2: 631–657 (1992).

    Article  Google Scholar 

  94. A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York, 1949.

    MATH  Google Scholar 

  95. E. Wolf and M. Niet-Vesperinas, Analyticity of the angular spectrum amplitude of scattered fields and some of its consequence, J. Opt. Soc. Am. A 2: 886–890 (1985).

    Article  Google Scholar 

  96. Th. Martin and R. Landauer, Time delay of evanescent electromagnetic waves and the analogy to particle tunneling, Phys. Rev. A 45: 2611–2617 (1992).

    Article  Google Scholar 

  97. A. M. Steinberg and R. Chiao, Tunneling delay times in one and two dimensions, Phys. Rev. A 49: 3283–3295 (1994).

    Article  Google Scholar 

  98. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Vol. 1, Wiley, New York, 1977, Chapter 1, p. 71.

    Google Scholar 

  99. P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, Cambridge, 1993.

    Book  Google Scholar 

  100. J. P. Fillard, M. Castagne, and C. Prioleau, Atomic force microscopy silicon tips as photon tunneling sensors: Aresonant evanescent coupling experiment, Appl. Opt. 34: 3737–3742 (1995).

    Article  Google Scholar 

  101. H. Levine and J. Schwinger, On the theory of diffraction by an aperture in an infinite plane screen. I, Phys. Rev. 74: 958–974 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  102. G. Mie, Ann. Phys. (Leipzig) 25: 377 (1908).

    Article  MATH  Google Scholar 

  103. B. B. Dasgupta, and R. Fuchs, Polarizability of a small sphere including nonlocal effects, Phys. Rev. 524: 554–561 (1981).

    Google Scholar 

  104. R. Fuchs and F. Claro, Multipolar response of small metallic spheres: Nonlocal theory, Phys. Rev. B 35: 3722–3727 (1987).

    Article  Google Scholar 

  105. F. Hache, D. Richard, and C. Girard, Optical nonlinear response of small metal particles: A self-consistent calculation, Phys. Rev. B 38: 7990–7996 (1988).

    Article  Google Scholar 

  106. R. K. Bullough, Many-body optics I. Dielectric constants and optical dispersion relations, J. Phys. A (Proc. Phys. Soc.) Ser. 2 1: 409–430 (1968).

    Google Scholar 

  107. R. K. Bullough, Many-body optics II. Dielectric constant formulation of the binding energy of a molecular fluid, J. Phys. A (Gen. Phys.) Ser. 2 2: 477–486 (1969).

    Google Scholar 

  108. R. K. Bullough, Many-body optics III. The optical extinction theorem and ɛl (k,ω), J. Phys. A (Gen. Phys.) 3: 708–725 (1970).

    Article  Google Scholar 

  109. R. K. Bullough, Many-body optics IV. The total transverse response and ɛl,(k,ω)), J. Phys. A (Gen. Phys.) 3: 726–750 (1970).

    Article  Google Scholar 

  110. R. K. Bullough, Many-body optics V. Virtual-mode theory, and phenomenological binding energies in the complex-dielectric-constant approximation, J. Phys. A (Gen. Phys.) 3: 751–773 (1970).

    Article  Google Scholar 

  111. C. Girard and C. Girardet, Self-consistent interaction potential for a molecule absorbed on a dielectric surface: A symmetric top molecule on an ionic crystal, J. Chem. Phys. 86: 6531–6539 (1987).

    Article  Google Scholar 

  112. C. Girard, Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe, Phys. Rev. B 43: 8822–8828 (1991).

    Article  Google Scholar 

  113. S. John, H. Sompolinsky, and M. J. Stephen, Localization in a disordered elastic medium near two dimensions, Phys. Rev. B 27: 5592–5603 (1983).

    Article  Google Scholar 

  114. S. John and M. J. Stephen, Wave propagation and localization in a long-range correlated random potential, Phys. Rev. B 28: 6358–6368 (1983).

    Article  Google Scholar 

  115. S. John, Electromagnetic absorption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53: 2169–2172 (1984).

    Article  Google Scholar 

  116. S. John, Localization and absorption of waves in a weekly dissipative disordered medium, Phys. Rev. B 31: 304–309 (1985).

    Article  Google Scholar 

  117. S. John, Strong localization of photons in certain disordered dielectric sphere-lattices, Phys. Rev. Lett. 58: 2486–2489 (1987).

    Article  Google Scholar 

  118. S. John and J. Wang, Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms, Phys. Rev. Lett. 64: 2418–2421 (1990).

    Article  Google Scholar 

  119. C. K. Carniglia and L. Mandel, Quantization of evanescent electromagnetic waves, Phys. Rev. D 3: 280–296 (1971).

    Article  Google Scholar 

  120. J. A. Wheeler and R. P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys. 17: 157–181 (1945).

    Article  Google Scholar 

  121. R. P. Feynman, Quantum Electrodynamics, Benjamin/Cummings, Reading, Massachusetts, 1961.

    Google Scholar 

  122. R. P. Feynman, The Theory of Fundamental Processes, Benjamin/Cummings, Reading, Massachusetts, 1962, Section 20, pp. 95–100.

    MATH  Google Scholar 

  123. G. Torardo di Francia, On the theory of some Cerenkovian effects, Nuovo Cimenio 16: 1085–1101 (1960).

    Article  Google Scholar 

  124. D. A. Tidman, A quantum theory of radiative index, Cerenkov radiation and the energy loss of a fast charged particle, Nucl Phys. 2: 289–346 (1956/1957).

    Article  Google Scholar 

  125. G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and blackbody fluctuations in finite geometries, Phys. Rev. A 11: 230–242 (1975).

    Article  Google Scholar 

  126. G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and conductors. II. Theory of dispersion forces, Phys. Rev. A 11: 243–252 (1975).

    Article  Google Scholar 

  127. G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and non stationary fields, density of states, the field-correlation functions, and surface-dependent response functions, Phys. Rev. A 11: 253–264 (1975).

    Article  Google Scholar 

  128. H. Chew, P. J. McNulty, and, M. Kerker, Model for Raman and fluorescent scattering by molecules embedded in small particles, Phys. Rev. A 13: 396–404 (1976).

    Article  Google Scholar 

  129. H. Chew, Transition rates of atoms near spherical surfaces, J. Chem. Phys. 87: 1355–1360 (1987).

    Article  Google Scholar 

  130. D. Mechede, W. Jhe, and E. A. Hinds, Radiative properties of atoms near a conducting plane: An old problem in a new light, Phys. Rev. A 41: 1587–1596 (1990).

    Article  Google Scholar 

  131. E. A. Hinds and V. Sandoghdar, Cavity QED level shifts of simple atoms, Phys. Rev. A 43: 398–403 (1991).

    Article  Google Scholar 

  132. W. Jhe and J. W. Kim, Atomic energy-level shifts near a dielectric microsphere, Phys. Rev. A 51: 1150–1153 (1995).

    Article  Google Scholar 

  133. M. Janowicz and W. Źakowicz, Quantum radiation of a harmonic oscillator near the planar dielectric-vacuum interface, Phys. Rev. A 50: 4350–4364 (1994).

    Article  Google Scholar 

  134. J. J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals, Phys. Rev. 112: 1555–1567 (1958).

    Article  MATH  Google Scholar 

  135. S. M. Barnett, B. Huttner, and R. Roudon, Spontaneous emission in absorbing dielectric media, Phys. Rev. Lett. 68: 3698–3701 (1992).

    Article  Google Scholar 

  136. P. A. M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. Lond. A 167: 148–169 (1938).

    Article  Google Scholar 

  137. G. N. Plass, Classical electrodynamic equations of motion with radiative reaction, Rev. Mod. Phys. 33: 37–62 (1961).

    Article  MathSciNet  Google Scholar 

  138. H. Schwarz and H. Hora, Modulation of an electron wave by a light wave, Appl. Phys. Lett. 15: 349–351 (1969).

    Article  Google Scholar 

  139. H. Hora, Coherence of matter waves in the effect of electron waves modulation by laser beams in solids, Phys. Stat. Sol. 42: 131–136 (1970).

    Article  Google Scholar 

  140. J. Bae, H. Shirai, T. Nishida, T. Nozokido, K. Furuya, and K. Mizuno, Experiantal verification of the theory on the inverse Smith-Purcell effect at a submillileter wavelength, Appl. Phys. Lett. 61: 870–872 (1992).

    Article  Google Scholar 

  141. J. Bae, S. Okuyama, T. Akizuki, and K. Mizuno, Electron energy modulation with laser light using a small gap circuit: A theoretical consideration, Nucl. lustrum. Meth. Phys. Res. A 331: 509–512 (1993).

    Article  Google Scholar 

  142. P. K. Tien and J. P. Gordon, Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films, Phys. Rev. 129: 647–651 (1962).

    Article  Google Scholar 

  143. L. P. Kouwenhoven, S. Jauhar, K. McCormic, D. Dixon, P. L. McEuen, Yu. V. Nazarov, N. C. van der Vaart, and C. T. Foxon, Photon-assisted tunneling through a quantum dot, Phys. Rev. B 50: 2019–2022 (1994).

    Article  Google Scholar 

  144. L. P. Kowenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Observation of photon-assisted tunneling through a quantum dot, Phys. Rev. Lett. 73: 3443–3446 (1994).

    Article  Google Scholar 

  145. P. Johansson, R. Monreal, and P. Appel, Theory of light emission from a scanning tunneling microscope, Phys. Rev. B 42: 9210–9213 (1990).

    Article  Google Scholar 

  146. R. Berndt, J. K. Gimzewski, and P. Johansson, Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surface, Phys. Rev. Lett. 37: 3796–3799 (1991).

    Article  Google Scholar 

  147. R. Berndt and J. K. Gimzewski, Injection luminescence from CdS(l 120) studied with scanning tunneling microscopy, Phys. Rev. B 45: 14095–14099 (1992).

    Article  Google Scholar 

  148. M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation, and Applications, Wiley, New York, 1996.

    Google Scholar 

  149. J. P. Fillard, Near Field Optics and Nanoscopy, World Scientific, Singapore, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohtsu, M., Hori, H. (1999). Introduction. In: Near-Field Nano-Optics. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4835-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4835-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7192-2

  • Online ISBN: 978-1-4615-4835-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics