Skip to main content

Phase Separation of two Immiscible Liquids

  • Chapter
High-Performance Computing

Abstract

The separation of a binary fluid mixture into its constituent phases involves the interaction of numerous physical phenomena. Studying such a transition gives insight into the underlying mechanisms, their respective strengths and at what stage in the separation each becomes important or dominant. Large scale simulations of 3 dimensional spinodal decomposition in a binary fluid using the Dissipative Particle Dynamics method show the approach to a linear time dependence in domain coarsening. We present interface and velocity maps which clearly demonstrate the Siggia mechanism for domain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Bray, Advances in Physics 43:357–459 (1994).

    Article  Google Scholar 

  2. H. Furukawa, Advances in Physics 34:703–50 (1986).

    Article  Google Scholar 

  3. J.D. Gunton et al., in: Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz eds. Academic Press, New York (1983) pp267–482.

    Google Scholar 

  4. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19:35–50 (1961).

    Article  Google Scholar 

  5. P.M. Chaikin, and T.C. Lubensky, in: Principles of Condensed Matter Physics, Cambridge University Press (1995).

    Google Scholar 

  6. E.D. Siggia, Phy. Rev.A20:595–605 (1979).

    Article  Google Scholar 

  7. S.H. Chen S.H. et al., Progress in Colloid and Polymer Science, 93:311–316 (1993).

    Article  CAS  Google Scholar 

  8. N. Wong and C.M. Knobler, Phys. Rev.A24:3205–211 (1981).

    Article  Google Scholar 

  9. T. Lookman, W. Yanan, J.A. Francis and S. Chen, Phys. Rev E53:5513–5516 (1996).

    Google Scholar 

  10. S. Chen and T. Lookman, J. Stat. Phys.81:223–35 (1995).

    Google Scholar 

  11. M. Laradji, S. Toxvaerd and O.G. Mouritsen, Phys. Rev. Lett. 772253–772256 (1996).

    Google Scholar 

  12. S. Bastea and J.L. Lebowitz, Phys. Rev. Lett.78:3499–502 (1997).

    Article  CAS  Google Scholar 

  13. T. Hashimoto et al., Physica A 204:261–276 (1994).

    Article  CAS  Google Scholar 

  14. S. Bastea and J.L, Lebowitz, Phys. Rev. E52:3821–3826 (1995).

    Google Scholar 

  15. P. Espagnol and P.B. Warren, Europhys. Lett. 30:191–196 (1995).

    Article  Google Scholar 

  16. P.J. Hoogerbrugge and J.M.V.A. Koelman, Europhys. Lett. 19:155–160 (1992); J.M.V.A. Koel-man and P.J. Hoogerbrugge, Europhys. Lett. 21:363-368 (1993); E.S. Boek, P.V. Coveney and H.N.W. Lekkerkerker, J. Phys.Cond. Mat. 8:9509-12 (1996); E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker and P.V.D. Schoot, Phys. Rev.E55:3124-38 (1997).

    Article  Google Scholar 

  17. P.V. Coveney and K.E. Novik, Phys. Rev. E54:5134–5141 (1996); P.V. Coveney and K.E. Novik, Phys. Rev. E55:4831 (1997).

    Google Scholar 

  18. S.I. Jury, P. Bladon, M.E. Gates and S. Krishna, in preparation.

    Google Scholar 

  19. A.G. Schlijper, P.J. Hoogerbrugge and C.W. Manke, J. Rheology.39:567–579 (1995); Y. Kong, C.W. Manke, W.G, Madden and A.G. Schlijper, J. Chem. Phys. 107:592-602 (1997).

    Google Scholar 

  20. R.D. Groot and P.B. Warren, J. Chem. Phys. 107:4423–4435 (1997).

    Article  CAS  Google Scholar 

  21. C.A. Marsh, G. Backx and M.H. Ernst, Phys. Rev. E56:1676–1691 (1997).

    Google Scholar 

  22. M.P. Allen and D.J. Tildesley, in: Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

    Google Scholar 

  23. J.S. Rowlinson and B. Widom, in: Molecular Theory of Capillarity, Clarendon Press, Oxford (1982).

    Google Scholar 

  24. C. Yeung, Phys. Rev. Lett. 61:1135–1138 (1988); H. Furukawa, J. Phys. Soc. Jap. 58:216-21 (1989); M. Takenaka and T. Hashimoto, J. Chem. Phys. 96:6177-90 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jury, S.I., Bladon, P., Krishna, S., Gates, M.E. (1999). Phase Separation of two Immiscible Liquids. In: Allan, R.J., Guest, M.F., Simpson, A.D., Henty, D.S., Nicole, D.A. (eds) High-Performance Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4873-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4873-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7211-0

  • Online ISBN: 978-1-4615-4873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics