Skip to main content

Interactions between Agrobacterium Tumefaciens and Plant Cells

  • Chapter
Phytochemical Signals and Plant-Microbe Interactions

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 32))

Abstract

In the last 20 years we have seen tremendous progress in the field of plant molecular biology. This has been due largely to our ability to transform single plant cells, which can then be regenerated into complete plants. In this way, it is possible to genetically engineer plants with specific desired traits. Plant cell transformation can be achieved by chemical or physical means, but the most widely used transformation protocols utilize the elegant transformation system of the gram negative soil bacterium, Agrobacterium tumefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HOOYKAAS, P.J.J., BEIJERSBERGEN, A.G.M. 1994. The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32: 157–179.

    Article  CAS  Google Scholar 

  2. ALLARDET-SERVENT, A., MICHAUX-CHARACHON, S., JUMAS-BILAK, E., KARAYAN, L., RAMUZ, M. 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J. Bacteriol. 175: 7869–7874.

    PubMed  CAS  Google Scholar 

  3. HOOYKAAS, P.J.J., KLAPWIJK, P.M., NUTI, M.P., SCHILPEROORT, R.A., RORSCH, A. 1977. Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J. Gen. Microbiol. 98: 477–484.

    Article  Google Scholar 

  4. VAN VEEN, R.J.M., DEN DULK-RAS, H., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1989. Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch. Microbiol. 153: 85–89.

    Article  Google Scholar 

  5. DOUGLAS, C.J., STANELONI, R.J., RUBIN, R.A., NESTER, E.W. 1985. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J. Bacteriol. 161:850–860.

    PubMed  CAS  Google Scholar 

  6. MATTHYSSE, A.G. 1987. Characterization of non-attaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169: 313–323.

    PubMed  CAS  Google Scholar 

  7. THOMASHOW, M.F., KARLINSEY, J.E., MARKS, J.R., HURLBERT, R.E. 1987. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J. Bacteriol. 169: 3209–3216.

    PubMed  CAS  Google Scholar 

  8. FARRAND, S.K. 1993. Conjugal transfer of Agrobacterium plasmids. In: Bacterial Conjugation. (D.B. Clewell, ed.) Plenum Press, New York. pp. 255–291.

    Google Scholar 

  9. ALT-MORBE, J., STRYKER, J.L., FUQUA, C., LI, P.L., FARRAND, S.K., WINANS, S.C. 1996. The conjugal transfer system of Agrobacterium tumefaciens octopine type Ti plamsids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J. Bacteriol. 14: 4233–4247.

    Google Scholar 

  10. KLAPWIJK, P.M., SCHEULDERMAN, T., SCHILPEROORT, R.A. 1978. Coordinated regulation of octopine degradation and conjugative transfer of Ti plasmids in Agrobacterium tumefaciens: Evidence for a common regulatory gene and separate operons. J. Bacteriol. 136: 775–785.

    PubMed  CAS  Google Scholar 

  11. PETIT, A., TEMPE, J., KERR, A., HOLSTERS, M., VAN MONTAGU, M., SCHELL, J. 1978. Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271:570–572.

    Article  CAS  Google Scholar 

  12. ELLIS, J.G., KERR, A., PETIT, A., TEMPE, J. 1982. Conjugal transfer of nopaline and agropine Ti plasmids. The role of agrocinopines. Mol. Gen. Genet. 186: 269–274.

    Article  CAS  Google Scholar 

  13. KERR, A. 1969. Transfer of virulence between isolates of Agrobacterium. Nature 223: 1175–1176.

    Article  Google Scholar 

  14. FUQUA, W.C., WINANS, S.C. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plamsid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176:2796–2806.

    PubMed  CAS  Google Scholar 

  15. FUQUA, W.C., WINANS, S.C., GREENBERG, E.P. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell-density responsive transcriptional regulators. J. Bacteriol. 176: 269–275.

    PubMed  CAS  Google Scholar 

  16. HWANG, L., COOK, D.M., FARRAND, S.K. 1995. A new regulatory element modulates homoserine lactone mediated autoinduction of Ti plasmid conjugal transfer. J. Bacteriol. 177: 449–458.

    PubMed  CAS  Google Scholar 

  17. MORÉ, M.I., FINGER, D.L., STRYKER, J.L., FUQUA, C., EBERHARD, A., WINANS, S.C. 1996. Enzymatic synthesis of a quorum sensing autoinducer through use of defined substrates. Science 272: 1655–1658.

    Article  PubMed  Google Scholar 

  18. MEIGHEN, E.A. 1991. Molecular biology of bacterial luminescence. Microbiol. Rev. 55: 123–142.

    PubMed  CAS  Google Scholar 

  19. YADAV, N.S., VANDERLEYDEN, J., BENNETT, D.R., BARNES, W.M., CHILTON, M-D. 1982. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc. Natl. Acad. Sci. USA 79: 6322–6326.

    Article  PubMed  CAS  Google Scholar 

  20. GARFINKEL, D.J., SIMPSON, R.B., REAM, L.W., WHITE, F.F., GORDON, M.P., NESTER, E.W. 1981. Genetic analysis of crown gall: Fine structure map of the T-DNA by site directed mutagenesis. Cell 27: 143–153.

    Article  PubMed  CAS  Google Scholar 

  21. OOMS, G., HOOYKAAS, P.J.J., MOOLENAAR, G., SCHILPEROORT, R.A. 1981. Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids: Analysis of T-DNA functions. Gene 14: 33–50.

    Article  PubMed  CAS  Google Scholar 

  22. SCHRÖDER, G., WAFFENSCHMIDT, S., WEILER, E.W., SCHRÖDER, J. 1984. The T region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138:387–391.

    Article  PubMed  Google Scholar 

  23. THOMASHOW, M.F., HUGLY, S., BUCHHOLZ, W.G., THOMASHOW, L.S. 1986. Molecular basis for the auxin independent phenotype of crown gall tumor tissues. Science 231: 616–618.

    Article  PubMed  CAS  Google Scholar 

  24. YAMADA, T., PALM, C.J., BROOKS, B., KOSUGE, T. 1985. Nucleotide sequences of the Pseudomonas savastanoi indole acetic acid gene show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci. USA 82: 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  25. BARKER, R.F., IDLER, K.B., THOMPSON, D.V., KEMP, J.D. 1983. Nucleotide sequence of the T-DNA region from Agrobacterium tumefaciens octopine Ti plasmid pTil 5955. Plant Mol. Biol. 2: 335–350.

    Article  CAS  Google Scholar 

  26. MAGRELLI, A., LANGENKEMPER, K., DEHIO, C., SCHELL, J., SPENA, A. 1994. Splicing of the rolA transcript of Agrobacterium rhizogenes in Arabidopsis. Science 266: 1986–1988.

    Article  PubMed  CAS  Google Scholar 

  27. LEEMANS, J., DEBLAERE, R., WILLMITZER, L., DE GREVE, H., HERNALSTEENS, J.P., VAN MONTAGU, M., SCHELL, J. 1982. Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J. 1: 147–152.

    PubMed  CAS  Google Scholar 

  28. HILLE, J., WULLEMS, G., SCHILPEROORT, R.A. 1983. Non-oncogenic T-region mutants of Agrobacterium tumefaciens do transfer T-DNA into plant cells. Plant Mol. Biol. 2: 155–163.

    Article  CAS  Google Scholar 

  29. WINANS, S.C. 1992. Two way chemical signalling in Agrobacterium-plant interactions. Microbiol. Rev. 56: 12–31.

    PubMed  CAS  Google Scholar 

  30. STACHEL, S.E., ZAMBRYSKI, P.C. 1986. VirA and VirG control the plant induced activation of the T-DNA transfer process of Agrobacterium tumefaciens. Cell 46: 325–333

    Article  PubMed  CAS  Google Scholar 

  31. TURK, S.C.H.J., MELCHERS, L.S., DEN DULK-RAS, H., REGENSBURG-TUINK, A.J.G., HOOYKAAS, P.J.J. 1991. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the Vir A sensor protein. Plant Mol. Biol. 16: 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  32. STACHEL, S.E., MESSENS, E., VAN MONTAGU, M., ZAMBRYSKI, P. 1985. Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629.

    Article  Google Scholar 

  33. SPENCER, P.A., TOWERS, G.H.N. 1988. Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785.

    Article  CAS  Google Scholar 

  34. MELCHERS, L.S., REGENSBURG-TUINK, A.J.G., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1989. Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol. Microbiol. 3: 969–977.

    Article  PubMed  CAS  Google Scholar 

  35. SONG, Y-N., SHIBUYA, M., EBRIZUKA, Y., SANKAWA, U. 1991. Identification of plant factors inducing virulence gene expression in Agrobacterium tumefaciens. Chem. Pharm. Bull. 39: 2347–2350.

    Article  CAS  Google Scholar 

  36. LEE, Y-W., SHOUGUANG, J., SIM, W-S., NESTER, E.W. 1995. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 92: 12245–12249.

    Article  PubMed  CAS  Google Scholar 

  37. MORRIS, J.W., MORRIS, R.O. 1990. Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii. Proc. Natl. Acad. Sci. USA 87: 3614–3618.

    Article  PubMed  CAS  Google Scholar 

  38. SAHI, S.V., CHILTON, M-D., CHILTON, W.S. 1990. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 87: 3879–3883.

    Article  PubMed  CAS  Google Scholar 

  39. MELCHERS, L.S., REGENSBURG-TUINK, A.J.G., BOURRET, R.B., SEDEE, N.J.A., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1989. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J. 8: 1919–1925.

    PubMed  CAS  Google Scholar 

  40. HUANG, Y., MOREL, P., POWELL, B., KADO, C.I. 1990. VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J. Bacteriol. 172: 1142–1144.

    PubMed  CAS  Google Scholar 

  41. JIN, S., ROITSCH, T., ANKENBAUER, R.G., GORDON, M.P., NESTER, E.W. 1990. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J. Bacteriol. 172: 525–530.

    PubMed  CAS  Google Scholar 

  42. JIN, S., PRUSTI, R.K., ROITSCH, T., ANKENBAUER, R.G., NESTER, E.W. 1990. The VirG protein of Agrobacterium tumefaciens is phosphorylated by the autophosphorylated VirA protein and this is essential for its biological activity. J. Bacteriol. 172: 4945–4950.

    PubMed  CAS  Google Scholar 

  43. PAZOUR, G.J., DAS, A. 1990. VirG, an Agrobacterium tumefaciens transcriptional activator, initiates translation at a UUG codon and is a sequence specific DNA-binding protein. J. Bacteriol. 172: 1241–1249.

    PubMed  CAS  Google Scholar 

  44. TAMAMOTO, S., AOYAMA, T., TAKANAMI, M., OKA, A. 1990. Binding of the regulatory protein VirG to the phased signal sequences upstream from virulence genes on the hairy root inducing plasmid. J. Mol. Biol. 215: 537–547.

    Article  PubMed  CAS  Google Scholar 

  45. SHIMODA, N., TOYODA-YAMAMOTO, A., NAGAMINE, J., USAMI, S., KATAYAMA, M. 1990. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc. Natl. Acad. Sci. USA 87: 6684–6688.

    Article  PubMed  CAS  Google Scholar 

  46. CANGELOSI, G.A., ANKENBAUER, R.G., NESTER, E.W. 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87: 6708–6712.

    Article  PubMed  CAS  Google Scholar 

  47. SHIMODA, N., TOYODA-YAMAMOTO, A., AOKI, S., MACHIDA, Y 1993. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar binding protein of Agrobacterium. Proc. Natl. Acad. Sci. USA 268: 26552–26558.

    CAS  Google Scholar 

  48. STACHEL, S.E., TIMMERMAN, B., ZAMBRYSKI, P. 1986. Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712.

    Article  CAS  Google Scholar 

  49. YANOFSKY, M.F., PROTER, S.G., YOUNG, C., ALBRIGHT, L.M., GORDON, M.P., NESTER, N.W. 1986. The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47: 471–477.

    Article  PubMed  CAS  Google Scholar 

  50. PANSEGRAU, W., SCHOUMACHER, F., HOHN, B., LANKA, E. 1993. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plamsids: Analogy to bacterial conjugation. Proc. Natl. Acad. Sci. USA 90: 11538–11542.

    Article  PubMed  CAS  Google Scholar 

  51. SCHEIFFELE, P., PANSEGRAU, W., LANKA, E. 1995. Initiation of Agrobacterium tumefaciens T-DNA processing. J. Bio. Chem. 270: 1269–1276.

    Article  CAS  Google Scholar 

  52. PANSEGRAU, W., LANKA, E. 1991. Common sequence motifs in DNA relaxases and nick regions from a variety of DNA transfer systems. Nuc. Acids Res. 19: 3455.

    Article  CAS  Google Scholar 

  53. ILYINA, T.V., KOONIN, E.V. 1992. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eukaryotes and archaebacteria. Nuc. Acids Res. 20: 3279–3285.

    Article  CAS  Google Scholar 

  54. BUCHANON-WOLLASTON, V., PASSIATORE, J.E., CANNON, F. 1987. The mob and oriT mobilization functions of a bacterial plasmid promoite its transfer to plants. Nature 328: 172–175.

    Article  Google Scholar 

  55. TORO, N., DATTA, A., CARMI, O.A., YOUNG, C., PRUSTI, R.K., NESTER, E.W. 1989 The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J. Bacteriol. 171: 6845–6849.

    PubMed  CAS  Google Scholar 

  56. PERALTA, E.G., HELLMISS, R., REAM, W. 1986. Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour inducing plasmid. EMBO J. 5: 1137–1142.

    PubMed  CAS  Google Scholar 

  57. VAN HAAREN, M.J.J., SEDEE, N.J.A., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1987. Overdrive is a T-region transfer enhancer which stimulates T-strand production in Agrobacterium tumefaciens. Nuc. Acids. Res. 15: 8983–8997.

    Article  Google Scholar 

  58. VOGEL, A.M., DAS, A. 1992. Mutational analysis of Agrobacterium tumefaciens VirD2: tyrosine 29 is essential for endonuclease activity. J. Bacteriol. 174: 303–308.

    PubMed  CAS  Google Scholar 

  59. KOUKOLIKOVA-NICOLA, Z., RAINERI, D., STEPHENS, K., RAMOS, C., TINLAND, B., HOHN, B. 1993. Genetic analysis of the virD operon of Agrobaacterium tumefaciens: A search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J. Bacteriol. 175: 723–731.

    PubMed  CAS  Google Scholar 

  60. STACHEL, S.E., TIMMERMAN, B., ZAMBRYSKI, P. 1987. Activation of Agrobacterium tumefaciens vir gene expression generates multiple single stranded T-strand molecules from the pTiA6 T-region: Requirement for 5’ virD gene products. EMBO J. 6: 857–863.

    PubMed  CAS  Google Scholar 

  61. HOWARD, E.A., ZUPAN, J.R., CITOVSKY, V., ZAMBRYSKI, P. 1992. The VirD2 protein of Agrobacterium tumefaciens contains a C terminal bipartite nuclear localization signal: Implications for nuclear uptake of DNA in plant cells. Cell 68: 109–118.

    Article  PubMed  CAS  Google Scholar 

  62. ROSSI, L., HOHN, B., TINLAND, B. 1993. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plants. Mol. Gen. Genet. 239: 345–353.

    Article  PubMed  CAS  Google Scholar 

  63. DÜRRENBERGER, F., CRAMERI, A., HOHN, B., KOUKOLIKOVA-NICOLA, Z. 1989. Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degredation. Proc. Natl. Acad. Sci. USA 86: 9154–9158.

    Article  PubMed  Google Scholar 

  64. CITOVSKY, V., WONG, M.L., ZAMBRYSKI, P. 1989. Cooperative interaction of Agrobacterium VirE2 protein with single stranded DNA: Implications for the T-DNA transfer process. Proc. Natl. Acad. Sci. USA 86: 1193–1197.

    Article  PubMed  CAS  Google Scholar 

  65. CHRISTIE, P.J., WARD, J.E., WIN ANS, S.C., NESTER, E.W. 1988. The Agrobacterium tumefaciens virE2 gene product is a single stranded DNA binding protein that associates with T-DNA. J. Bacteriol. 170: 2584–2591.

    Google Scholar 

  66. SEN, P., PAZOUR, G.J., ANDERSON, D., DAS, A. 1989. Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA. J. Bacteriol. 171: 2573–2580.

    PubMed  CAS  Google Scholar 

  67. HOWARD, E., CITOVSKY, V. 1990. The emerging structure of the Agrobacterium T-DNA transfer complex. BioEssays 12: 103–108.

    Article  CAS  Google Scholar 

  68. YUSIBOV, V.M., STECK, T.R., GUPTA, V., GELVIN, S.B. 1994. Association of singlestranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc. Natl. Acad. Sci. USA 91: 2994–2998.

    Article  PubMed  CAS  Google Scholar 

  69. CITOVSKY, V., ZUPAN, J., WARNICK, D., ZAMBRYSKI, P. 1992. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802–1805.

    Article  PubMed  CAS  Google Scholar 

  70. ZUPAN, J.R., CITOVSKY, V., ZAMBRYSKI, P. 1996. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc. Natl. Acad. Sci. USA 93:2392–2397.

    Article  PubMed  CAS  Google Scholar 

  71. ROSSI, L., HOHN, B., TINLAND, B. 1996. Integration of complete transferred DNA units is dependant on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 93: 126–130.

    Article  PubMed  CAS  Google Scholar 

  72. THOMPSON, D.V., MELCHERS, L.S., IDLER, K.B., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1988. Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nuc. Acids Res. 16: 4621–4636.

    Article  CAS  Google Scholar 

  73. WARD, J.E., AKIYOSHI, D.E., REGIER, D., DATTA, A., GORDON, M.P., NESTER, E.W. 1988. Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J. Biol. Chem. 263: 5804–5814.

    PubMed  CAS  Google Scholar 

  74. KULDAU, G.A., DE VOS, G., OWEN, J., McCAFFERY, G., ZAMBRYSKI, P. 1990. The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol. Gen. Genet. 221: 256–266.

    Article  PubMed  CAS  Google Scholar 

  75. SHIRASU, K., MOREL, P., KADO, C.I. 1990. Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Mol. Microbiol. 4: 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  76. BERGER, B.R., CHRISTIE, P. J. 1994. Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J. Bacteriol. 176: 3646–3659.

    PubMed  CAS  Google Scholar 

  77. BAYER, M., EFERL, R., ZELLNIG, G., TEFERLE, K., DIJKSTRA, A., KORIAMANN, G. 1995. Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J. Bacteriol. 177: 4279–4288.

    PubMed  CAS  Google Scholar 

  78. MUSHEGIAN, A.R., FULLNER, K.J., KOONIN, E.V., NESTER, E.W. 1996. A family of lysozyme like virulence factros in bacterial pathogens of plants and animals. Proc. Natl. Acad. Sci. USA 93: 7321–7326.

    Article  PubMed  CAS  Google Scholar 

  79. CHRISTIE, P.J., WARD, J.E., GORDON, M.P., NESTER, E.W. 1989. A gene required for transfer of T-DNA to plants encodes a ATPase with autophosphorylating activity. Proc. Natl. Acad. Sci. USA 86: 9677–9681.

    Article  PubMed  CAS  Google Scholar 

  80. JONES, A.L., SHIRASU, D., KADO, C.I. 1994. The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of the VirB3 protein. J. Bacteriol. 176: 5255–5261.

    PubMed  CAS  Google Scholar 

  81. FERNANDEZ, D., SPUDICH, G.M., ZHOU, X.,-R., CHRISTIE, P.J. 1996. The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J. Bacteriol. 178: 3168–3176.

    PubMed  CAS  Google Scholar 

  82. SPUDICH, G.M., FERNANDEZ, D., ZHOU, X.,-R., CHRISTIE, P.J. 1996. Intermolecular disulphide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc. Natl. Acad. Sci. USA 93:7512–7517.

    Article  PubMed  CAS  Google Scholar 

  83. BEIJERSBERGEN, A., DULK-RAS, A.D., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. (1992). Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256: 1324–1327.

    Article  PubMed  CAS  Google Scholar 

  84. LESSL, M., BALZER, D., PANSEGRAU, W., LANKA, E. 1992. Sequence similarities between the RP4 Tra2 and the virB regions strongly support the conjugation model for T-DNA transfer. J. Bioi. Chem. 267: 20471–20480.

    CAS  Google Scholar 

  85. KADO, C.I. 1993. Agrobacterium mediated transfer and stable incorporation of foreign genes in plants. In: Bacterial Conjugation. (D.B. Clewell, ed.) Plenum, New York. pp. 243–254.

    Google Scholar 

  86. POHLMAN, R.F., GENETTI, H.D., WINANS, S.C. 1994. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol. Microbiol. 14: 655–668.

    Article  PubMed  CAS  Google Scholar 

  87. FULLNER, K.J., LANA, J.C., NESTER, E.W. 1996. Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273: 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  88. JONES, A.L., ERH-MIN, L., SHIRASU, K., KADO, C.I. 1996. VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 178: 5706–5711.

    PubMed  CAS  Google Scholar 

  89. LIN, T.-S., KADO, C.I. 1993. The virD4 gene is required for virulence while the virD3 and orf5 are not required for virulence of Agrobacterium tumefaciens. Mol. Microbiol. 9: 803–812.

    Article  PubMed  CAS  Google Scholar 

  90. OKAMOTO, S., TOYODA-YAMAMOTO, A., ITO, K., TAKEBE, I., MACHIDA, Y. 1991. Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol. Gen. Genet. 288: 24–32.

    Google Scholar 

  91. LESSL, M., PANSEGRAU, W., LANKA, E. 1992. Relationship of DNA transfer systems: Essential transfer functions of plasmids RP4, Ti and F share common sequences. Nucleic Acid Res. 20: 6099–6100.

    Article  PubMed  CAS  Google Scholar 

  92. OTTEN, L.A.B.M., DEGREVE, H., LEEMANS, J., HAIN, R., HOOYKAAS, P.J.J., SCHELL, J. (1984). Restoration of virulence of vir region mutants of Agrobacteriumtumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol. Gen. Genet. 195:159–163.

    Article  CAS  Google Scholar 

  93. OTTEN, L.A.B.M., PIOTROWIAK, G., HOOYKAAS, P.J.J., DUBOIS, M., SZEGEDI, E., SCHELL, J. 1985. Identification of an Agrobacterium tumefaciens pTiB6S3 vir region fragment that enhances the virulence of pTiC58. Mol. Gen. Genet. 199: 189–193.

    Article  CAS  Google Scholar 

  94. MELCHERS, L.S., MARONEY, M.J., DEN DULK-RAS, A., THOMPSON, D.V., VAN VUUREN, H.A.J., SCHILPEROORT, R.A., HOOYKAAS, P.J.J. 1990. Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence: Molecular characterization of the virF locus. Plant Mol. Biol. 14: 249–259.

    Article  PubMed  CAS  Google Scholar 

  95. REGENSBERG-TUINK, A.J.G., HOOYKAAS, P.J.J. 1993. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363: 69–70.

    Article  Google Scholar 

  96. WEISS, A.A., JOHNSON, F.D., BURNS, D.L. 1993. Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 90: 2970–2974.

    Article  PubMed  CAS  Google Scholar 

  97. TINLAND, B. 1996. The integration of T-DNA into plant genomes. Trends In Plant Science 1: 178–184.

    Article  Google Scholar 

  98. AMBROS, P.F., MATZKE, A.J.M., MATZKE, M.A. 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J. 5: 2073–2077.

    PubMed  CAS  Google Scholar 

  99. THOMAS, CM., JONES, D.A., ENGLISH, J.J., CARROLL, B.J., BENNETZEN, J.L., HARRISON, K., BURBIDGE, A., BISHOP, G.J., JONES, J.D.G. 1994. Analysis of the chromsomal distribultion of transposon carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol. Gen. Genet. 242: 573–585.

    Article  PubMed  CAS  Google Scholar 

  100. WALLROTH, M., GERATS, A.G.M., ROGERS, S.G., FRALEY, R.T., HORSCH, R.B. 1986. Chromosomal localization of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202: 6–15.

    Article  CAS  Google Scholar 

  101. HERMAN, L., JACOBS, A., VAN MONTAGU, M., DEPICKER, A. 1990. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.

    Article  PubMed  CAS  Google Scholar 

  102. GHEYSEN, G., VILLAROEL, R., VAN MONTAGU, M. 1991. Illegitimate recombination in plants: A model for T-DNA integration. Genes Dev. 5: 287–297.

    Article  PubMed  CAS  Google Scholar 

  103. MATSUMOTO, S., ITO, Y., HOSOI, T., TAKAHASHI, Y., MACHIDA, Y. 1990. Integration of Agrobacterium T-DNA into a tobacco chromosome: Possible involvement of DNA homology between T-DNA and plant DNA. Mol. Gen. Genet. 224: 309–316.

    Article  PubMed  CAS  Google Scholar 

  104. MAYERHOFER, R., KONCZ-KALMAN, Z., NAWRATH, C., BAKKEREN, G., CRAMERI, A., ANGELIS, K., REDEI, G.P., SCHELL, J., HOHN, B., KONCZ, C. 1991. T-DNA integration: A mode of illegitimate recombination in plants. EMBO J. 10: 697–704.

    PubMed  CAS  Google Scholar 

  105. BUNDOCK, P., DEN DULK-RAS, A., BEIJERSBERGEN, A.G.M., HOOYKAAS, P.J.J. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBOJ. 14:3206–3214.

    CAS  Google Scholar 

  106. BUNDOCK, P., HOOYKAAS, P.J.J. 1996. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc. Natl. Acad. Sci. USA 93: 15272–15275.

    Article  PubMed  CAS  Google Scholar 

  107. SCHIESTL, R.H., ZHU, J., PETES, T.D. 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell Biol. 14: 4493–4500.

    PubMed  CAS  Google Scholar 

  108. ZHU, J., SCHIESTL, R.H. 1996. Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell Biol. 16: 1805–1812.

    PubMed  CAS  Google Scholar 

  109. BOUTON, S.J., JACKSON, S.P. 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate double strand break repair and serves as a barrier to error prone DNA repair pathways. EMBO J. 15:5093–5103.

    Google Scholar 

  110. BOLTON, S.J., JACKSON, S.P. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintainance. Nuc. Acids Res. 24: 4639–4648.

    Article  Google Scholar 

  111. FELDMAN, H., DRILLER, L., MEIER, B., MAGES, G., KELLERMAN, J., WINNACKER, E.L. 1996. HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. 271: 27765–27769.

    Article  Google Scholar 

  112. DE FRAMOND, A.J., BARTON, K.A., CHILTON, M-D. 1983. Mini Ti: A new vector strategy for plant genetic engineering. Biotechnology 1: 262–269.

    Article  Google Scholar 

  113. HOEKEMA, A., HIRSCH, P.R., HOOYKAAS, P.J.J., SCHILPEROORT, R.A. 1983. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  114. BEVAN, M. 1984. Binary Agrobacterium vectors for plant transformation. Nuc. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  115. DEN DULK-RAS, A., HOOYKAAS, P.J.J. 1995. Electroporation of Agrobacterium tumefaciens. In: Methods in Molecular Biology Vol 55: Plant Cell Electroporation and Electrofusion Protocols. (J.A. Nickoloff, ed.) Humana Press Inc, Totowa, NJ. pp. 63–72.

    Chapter  Google Scholar 

  116. HORSCH, R.B., FRY, J.E., HOFFMANN, N.L., EICHHOLTZ, D., ROGERS, S.G., FRALEY, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  117. CHAREST, P.J., HOLBROOK, L.A., GABARD, J., IYER, V.N., MIKI, B.L. 1988. Agrobacterium mediated transformation of thin cell layer expiants from Brassica napus L. Theor. Appl. Genet. 75: 438–445.

    Article  Google Scholar 

  118. PUITE, K.J., SCHAART, J.G. 1996. Genetic modification of the commercial apple cultivars gala, golden delicious and elstar via an Agrobacterium tumefaciens mediated transformation method. Plant Science 119: 125–133.

    Article  CAS  Google Scholar 

  119. FENNING, T.M., TYMENS, S.S., GARTLAND, J.S., BRASIER, C.M., GARTLAND, K.M.A. 1996. Transformation and regeneration of english elm using wild type Agrobacterium tumefaciens. Plant Science 116: 37–46.

    Article  CAS  Google Scholar 

  120. HOOYKAAS-VAN SLOGTEREN, G.M.S., HOOYKAAS, P.J.J., SCHILPEROORT, R.A. 1984. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764.

    Article  CAS  Google Scholar 

  121. GRIMSLEY, R., HOHN, B., HOHN, T., WALDEN, R. 1986. Agroinfection’ an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 83: 3282–3286.

    Article  PubMed  CAS  Google Scholar 

  122. GRIMSLEY, N., HOHN, T., DAVIES, J.W., HOHN, B. 1987. Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  123. BOULTON, M.I., BUCHHOLZ, W.G., MARKS, M.S., PARKHAM, P.G., DAVIES, J.W. 1989. Specificity of Agrobacterium mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol. Biol. 12: 31–40.

    Article  CAS  Google Scholar 

  124. HIEI, Y., OHTA, S., KOMARI, T., KUMASHIRO, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  125. ISHIDA, Y., SAITO, H., OHTA, S., HIEI, Y., KOMARI, T., KUMASHIRO, T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745–750.

    Article  PubMed  CAS  Google Scholar 

  126. LI, H-Q., SAUTTER, C., POTRYKUS, I., PUONTI-KAERLAS, J. 1996. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology 14: 736–739.

    Article  PubMed  CAS  Google Scholar 

  127. KONCZ, C., NEMETH, K., REDEI, G.P., SCHELL, J. 1992. T-DNA insertional mutagenesis in Arabidopsis. Plant. Mol. Biol. 20: 963–976.

    Article  PubMed  CAS  Google Scholar 

  128. AZIPIROZ-LEEHAN, R., FELDMANN, K.A. 1997. T-DNA insertion mutagenesis in Arabidopsis: Going back and forth. Trends in Gen. 13: 152–156.

    Article  Google Scholar 

  129. VAECK, M., REYNAERTS, A., HÖFTE, H., JANSENS, S., DE BEUCKELEER, M., DEAN, C., ZABEAU, M., VAN MONTAGU, M., LEEMANS. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  130. ABEL, P.P., NELSON, R.S., HOFFMAN, N., ROGERS, S.G., FRALEY, R.T., BEACHY, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Article  PubMed  CAS  Google Scholar 

  131. SMITH, C.J.S., WATSON, C.F., RAY, J., BIRD, C.R., MORRIS, P.C., SCHUCH, W., GRIERSON, D. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    Article  CAS  Google Scholar 

  132. CHAVADEJ, S., BRISSON, N., McNEIL, J.N., DE LUCA, V. 1994. Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc. Natl. Acad. Sci. USA 91: 2166–2170.

    Article  PubMed  CAS  Google Scholar 

  133. MISAWA, N., MASAMOTO, K., HORI, T., OHTANI, T., BÖGER, P., SANDMANN, G. 1994. Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. Plant J. 6: 481–489.

    Article  CAS  Google Scholar 

  134. COURTNEY-GUTTERSON, N., NAPOLI, C., LEMIEUX, C., MORGAN, A., FIROOZABADY, E., ROBINSON, E.P. 1994. Modification of flower color in florists Chrysanthemum: Production of a white flowering variety through molecular genetics. Biotechnology 12:268–271.

    Article  PubMed  CAS  Google Scholar 

  135. OGER, P., PETIT, A., DESSAUX, Y. 1997. Genetically engineered plants producing opines alter their biological environment. Nature Biotechnology 15: 369–372.

    Article  PubMed  CAS  Google Scholar 

  136. SAVKA, M.A., FARRAND, S.K. 1997. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nature Biotechnology 15: 363–368.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bundock, P., Hooykaas, P. (1998). Interactions between Agrobacterium Tumefaciens and Plant Cells. In: Romeo, J.T., Downum, K.R., Verpoorte, R. (eds) Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5329-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5329-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7431-2

  • Online ISBN: 978-1-4615-5329-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics