Skip to main content

Influence of Gender, Sex Steroid Hormones, and the Hypothalamic-Pituitary Axis on the Structure and Function of the Lacrimal Gland

  • Chapter
Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2

Abstract

Throughout the twentieth century it has become increasingly apparent that males and females are different, and not just in terms of physical characteristics. Scientists have discovered that fundamental, gender-related differences exist in almost every cell, tissue and organ of the body, including those associated with respiration, digestion, metabolism, circulation, renal function, and neural and endocrine activity. Indeed, during a recent five year period, at least 8,159 scientific reports were published that addressed the basic and/or clinical influence of gender on health and disease (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wickham LA, Gao J, Toda I, Rocha EM, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in rat, rabbit and human ocular tissues. Submitted for publication, 1997.

    Google Scholar 

  2. Cavallero C. Relative effectiveness of various steroids in an androgen assay using the exorbital lacrimal gland of the castrated rat. Acta Endocrinol. (Copenh.) 1992; 55: 119–130.

    Google Scholar 

  3. Gabe M. Conditionnement hormonal de-la morphologie des glandes sus-parotidiennes chez le Rat albinos. Compt rend Séanc Soc Biol. 1955; 149: 223–225.

    CAS  Google Scholar 

  4. Cornell-Bell AH, Sullivan DA, Allansmith MR. Gender-related differences in the morphology of the lacrimal gland. Invest Ophthalmol Vis Sci. 1985; 26: 1170–1175.

    CAS  PubMed  Google Scholar 

  5. Cripps MM, Bromberg BB, Welch MH. Gender-dependent lacrimal protein secretion. Invest Ophthalmol Vzs Sci Suppl. 1986; 27: 25.

    Google Scholar 

  6. Ducommun P, Ducommun S, Baquiche M. Comparaison entre l’action du 17-ethyl-19-nor-testosterone et du propionate de testosterone chez le rat adulte et immature. Acta Endocrin. 1959; 30: 78–92.

    CAS  Google Scholar 

  7. Walker R. Age changes in the rat’s exorbital lacrimal gland. Anat Rec. 1958; 132: 49–69.

    Article  CAS  PubMed  Google Scholar 

  8. Luciano L. Die feinstruktur der tränendrüse der ratte und ihr geschlechtsdimorphismus. Zeitschrift far Zellforschung 1967; 76: 1–20.

    Article  CAS  Google Scholar 

  9. Paulini K, Beneke G, Kulka R. Age-and sex-dependent changes in glandular cells. I. Histologic and chemical investigations on the glandular lacrimalis, glandular intraorbitalis, and glandula orbitalis external of the rat. Gerontologia 1972; 18: 131–146.

    Article  CAS  PubMed  Google Scholar 

  10. Paulini K, Mohr W, Beneke G, Kulka R. Age-and sex-dependent changes in glandular cells. II. Cytomorphometric and autoradiographic investigations on the glandular lacrimalis, glandular intraorbitalis, and glandula orbitalis external of the rat. Gerontologia 1972; 18: 147–156.

    Article  CAS  PubMed  Google Scholar 

  11. Pangerl A, Pangerl B, Jones DJ, Reiter RJ. b-Adrenoreceptors in the extraorbital lacrimal gland of the syrian hamster. Characterization with -[125I]-iodopindolol and evidence of sexual dimorphism. J Neural Transm. 1989; 77: 153–162.

    Article  CAS  PubMed  Google Scholar 

  12. Mhatre MC, van Jaarsveld AS, Reiter RJ. Melatonin in the lacrimal gland: first demonstration and experimental manipulation. Biochem Biophys Res Comm. 1988; 153: 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  13. Sullivan DA, Hann LE, Yee L, Allansmith MR. Age-and gender-related influence on the lacrimal gland and tears. Acta Ophthalmologica 1990; 68: 188–194.

    Article  CAS  PubMed  Google Scholar 

  14. Shaw PH, Held WA, Hastie ND. The gene family for major urinary proteins: expression in several secretory tissues of the mouse. Cell 1983; 32: 755–761.

    Article  CAS  PubMed  Google Scholar 

  15. Tier H. Über Zellteilung und Kernklassenbildung in der Glandula orbitalis externa der Ratte. Acta path microbiol scand Suppl. 1944; 50: 1–185.

    Google Scholar 

  16. Sullivan DA, Allansmith MR. The effect of aging on the secretory immune system of the eye. Immunology 1988; 63: 403–410.

    CAS  PubMed  Google Scholar 

  17. Hann LE, Allansmith MR, Sullivan DA. Impact of aging and gender on the Ig-containing cell profile of the lacrimal gland. Acta Ophthalmologica 1988; 66: 87–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hahn JD. Effect of cyproterone acetate on sexual dimorphism of the exorbital lacrimal gland in rats. J Endocr. 1969; 45: 421–425.

    Article  CAS  PubMed  Google Scholar 

  19. Baquiche M. Le dimorphisme sexuel de la glande de Loewenthal chez le rat albinos. Acta anat. 1959; 36: 247–280.

    Article  CAS  PubMed  Google Scholar 

  20. Gao J, Lambert RW, Wickham LA, Banting G, Sullivan DA. Androgen control of secretory component mRNA levels in the rat lacrimal gland. J Ster Biochem Mol Biol. 1995; 52: 239–249.

    Article  CAS  Google Scholar 

  21. Lorber M, Vidic B. Weights and dimensions of 16 lacrimal glands from human cadavers. Invest Ophthalmol Vis Sci Suppl. 1994; 35: 1790.

    Google Scholar 

  22. Waterhouse JR. Focal adenitis in salivary and lacrimal glands. Proc R Soc Med. 1963; 56: 911–918.

    CAS  PubMed  Google Scholar 

  23. Sullivan DA, Wickham LA, Krenzer KL, Rocha EM, Toda I. Aqueous tear deficiency in Sjögren’s syndrome: Possible causes and potential treatment. In: Pleyer U, Hartmann C and Sterry W, eds. Oculodermal Diseases–Immunology of Bullous Oculo-Muco-Cutaneous Disorders. Buren, The Netherlands: Aeolus Press; 1997: 95–152.

    Google Scholar 

  24. Lauria A, Porcelli F. Leucine aminopeptidase (LAP) activity and sexual dimorphism in rat exorbital gland. Basic Appl Histochem. 1979; 23: 171–177.

    CAS  PubMed  Google Scholar 

  25. Azzarolo AM, Mazaheri AH, Mircheff AK, Warren DW. Sex-dependent parameters related to electrolyte, water and glycoprotein secretion in rabbit lacrimal glands. Curr Eye Res. 1993; 12: 795–802.

    Article  CAS  PubMed  Google Scholar 

  26. Ranganathan V, De PK. Androgens and estrogens markedly inhibit expression of a 20-kDa major protein in hamster exorbital lacrimal gland. Biochem Biophys Res Comm. 1995; 208: 412–417.

    Article  CAS  PubMed  Google Scholar 

  27. Kenney MC, Brown DJ, Hamdi H. Proteinase activity in normal human tears: male-female dimorphism. Invest Ophthalmol Vis Sci. 1995; 36: S4606.

    Google Scholar 

  28. Krawczuk-Hermanowiczowa O. Effects of sexual glands on the lacrimal gland. II. Changes in rat lacrimal glands after castration. Klin oczna 1983; 85: 15–17.

    CAS  PubMed  Google Scholar 

  29. Sullivan DA, Bloch KJ, Allansmith MR. Hormonal influence on the secretory immune system of the eye: Androgen regulation of secretory component levels in rat tears. Jlmmunol. 1984; 132. 1130–1135.

    CAS  Google Scholar 

  30. Sullivan DA, Bloch KJ, Allansmith MR. Hormonal influence on the secretory immune system of the eye: androgen control of secretory component production by the rat exorbital gland. Immunology 1984; 52: 239–246.

    CAS  PubMed  Google Scholar 

  31. Winderickx J, Vercaeren I, Verhoeven G, Heyns W. Androgen-dependent expression of cystatin-related protein (CRP) in the exorbital lacrimal gland of the rat. J Steroid Biochem Molec Biol. 1994; 48: 165–170.

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan DA, Allansmith MR. Hormonal influence on the secretory immune system of the eye: androgen modulation of IgA levels in tears of rats. J. Immunol. 1985; 134: 2978–2982.

    CAS  PubMed  Google Scholar 

  33. Calmettes L, Déodati F, Planet H, Bec P. Influence des hormones génitales sur la glande Iacrymale. Bull Soc franc Ophtal. 1956; 69: 263–270.

    Google Scholar 

  34. Gubits RM, Lynch KR, Kulkarni AB, Dolan KP, Gresik EW, Hollander P, Feigelson P. Differential regulation of a 2u globulin gene expression in liver, lachrymal gland, and salivary gland. J Biol Chem. 1984; 259: 12803–12809.

    CAS  PubMed  Google Scholar 

  35. Obata H, Yamamoto S, Horiuchi H, Machinami R. Histopathologic study of the human lacrimal gland. Statistical analysis with special reference to aging. Ophthalmol. 1995; 102: 678–686.

    CAS  Google Scholar 

  36. Rocha FJ, Wickham LA, Pena JDO, Gao J, Ono M, Lambert RW, Kelleher RS, Sullivan DA. Influence of gender and the endocrine environment on the distribution of androgen receptors in the lacrimal gland J Ster Biochem Mol Biol. 1993; 46: 737–749.

    Article  CAS  Google Scholar 

  37. Huang Z, Gao J, Wickham LA, Sullivan, DA. Influence of gender and androgen treatment on TGF411 mRNA levels in the rat lacrimal gland. Invest Ophthalmol Vis Sci. 1995; 35: S991.

    Google Scholar 

  38. Toda I, Rocha EM, Siveira LA, Wickham LA, Sullivan DA. Gender-related difference in the extent of lymphocyte infiltration in lacrimal and salivary glands of mouse models of Sjögren’s syndrome. Submitted for publication, 1997.

    Google Scholar 

  39. Rocha EM, Toda I, Wickham, LA, Silveira LA, Sullivan DA. Effect of gender, androgens and cyclophosphamide on cytokine mRNA levels in lacrimal tissues of mouse models of Sjögren’s syndrome. Submitted for publication, 1997.

    Google Scholar 

  40. Toda I, Wickham LA, Sullivan DA. Influence of gender and androgen treatment on the mRNA expression of proto-oncogenes and apoptotic factors in lacrimal and salivary tissues of the MRL/lpr mouse model of Sjögren’s syndrome. Submitted for publication, 1997.

    Google Scholar 

  41. Toda I, Wickham LA, Sullivan DA. Gender and and rogen-related influence on the expression of proto-oncogene and apoptotic factor mRNAs in lacrimal glands of autoimmune and non-autoimmune mice. Submitted for publication, 1997.

    Google Scholar 

  42. Wickham LA, Gao J, Toda I, Sullivan DA. Endocrine regulation of androgen receptor protein and sex steroid mRNA levels in the rat lacrimal gland. Submitted for publication, 1997.

    Google Scholar 

  43. Huang Z, Lambert RW, Wickham A, Sullivan DA. Analysis of cytomegalovirus infection and replication in acinar epithelial cells of the rat lacrimal gland. Invest Ophthalmol Vis Sci. 1996; 37: 1174–1186.

    CAS  PubMed  Google Scholar 

  44. Bromberg BB, Welch MH, Beuerman RW, Chew S-J, Thompson HW, Ramage D, Githens S. Histochemical distribution of carbonic anhydrase in rat and rabbit lacrimal gland. Invest Ophthalmol Vis Sci. 1993; 34: 339–348.

    CAS  PubMed  Google Scholar 

  45. De PK. Sex differences in content of peroxidase, a porphyrin containing enzyme, in hamster lacrimal gland. In: Abstracts of the International Conference on the Lacrimal Gland, Tear Film and Dry Eye Syndromes: Basic Science and Clinical Relevance (Bermuda); 1992: 40.

    Google Scholar 

  46. Sashima M, Hatakeyama S, Satoh M, Suzuki A. Harderianization is another sexual dimorphism of rat exorbital lacrimal gland. Acta Anat. 1989; 135: 303–306.

    Article  CAS  PubMed  Google Scholar 

  47. Parhon CI, Babes A, Petrea I, Istrati F, Burgher E. Structura si Dimorfismul sexual al glandelor parotide la Sobolanul Alb. Bul Stiint Sect de Stünte med. 1955; 7: 3.

    Google Scholar 

  48. Sullivan DA, Colby E, Hann LE, Allansmith MR, Wira CR. Production and utilization of a mouse monoclonal antibody to rat IgA: Identification of gender-related differences in the secretory immune system. Immunol Invest. 1986; 15: 311–318.

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan DA, Block L, Pena JDO. Influence of androgens and pituitary hormones on the structural profile and secretory activity of the lacrimal gland. Acta Ophthalmol Scand. 1996; 74: 421–435.

    Article  CAS  PubMed  Google Scholar 

  50. Remington SG, Lima PH, Nelson JD. Pancreatic lipase mRNA isolated from female mouse. Invest Ophthalmol Vis Sci. 1997; 38: S149.

    Google Scholar 

  51. Remington SG, Lima PH, Nelson JD. Pancreatic lipase mRNA isolated from female mouse. Invest Ophthalmol Vis Sci. 1997; 38: S149.

    Google Scholar 

  52. Remington SG, Lima PH, Nelson JD. Pancreatic lipase mRNA isolated from female mouse. Invest Ophthalmol Vis Sci. 1997; 38: S149.

    Google Scholar 

  53. Henderson SW, Prough WA. Influence of age and sex on flow of tears. Arch Ophthalmol. 1950; 43: 224–231.

    Article  CAS  Google Scholar 

  54. Henderson SW, Prough WA. Influence of age and sex on flow of tears. Arch Ophthalmol. 1950; 43: 224–231.

    Article  CAS  Google Scholar 

  55. Henderson SW, Prough WA. Influence of age and sex on flow of tears. Arch Ophthalmol. 1950; 43: 224–231.

    Article  CAS  Google Scholar 

  56. van Setten G, Schultz G. Transforming growth factor-alpha is a constant component of human tear fluid. Graefe: Arch Clin Exp Ophthalmol. 1994; 232: 523–526.

    Article  Google Scholar 

  57. Bodelier VMW, van Haeringen NJ. Gender related differences in tear fluid protein profiles of mice. In: Abstracts of the IVth International Congress of the International Society of Dacryology ( Stockholm, Sweden ); 1996: 24.

    Google Scholar 

  58. Craig JP, Tomlinson A. Effect of age on tear osmolality. Optom Vis Sci. 1995; 72: 713–717.

    Article  CAS  PubMed  Google Scholar 

  59. Sullivan DA. Hormonal influence on the secretory immune system of the eye. In: Freier S, editor. The Neuroendocrine-Immune Network. Boca Raton, FL: CRC Press; 1990: 199–238.

    Google Scholar 

  60. Sullivan DA, Sato EH. Immunology of the lacrimal gland. In Albert DM, Jakobiec, FA, editors. Principles and Practice of Ophthalmology: Basic Sciences. Philadelphia, PA: WB Saunders Company; 1994: 479–486.

    Google Scholar 

  61. Aumülier G, Arce EA, Heyns W, Vercaeren I, Dammshäuser, Seitz J. Immunocytochemical localization of seminal proteins in salivary and lacrimal glands of the rat. Cell Tissue Res. 1995; 280: 171–181.

    Article  Google Scholar 

  62. Dzierzykray-Rogalska I, Chodynicki S, Wisniewski L. The effect of gonadectomy on the parotid salivary gland and Loeventhal’s gland in white mice. Acta Med Polona 1963; 2: 221–228.

    Google Scholar 

  63. Carriere R. The influence of the thyroid gland on polyploid cell formation in the external orbital gland of the rat. Am JAnat. 1964; 115: 1–16.

    CAS  Google Scholar 

  64. Cavallero C, Morera P. Effect of testosterone on the nuclear volume of exorbital lacrimal glands of the white rat. Experentia 1960; 16: 285–286.

    Article  CAS  Google Scholar 

  65. Sullivan DA, Allansmith MR. Hormonal modulation of tear volume in the rat. Exp Eye Res. 1986; 42: 131–139.

    Article  CAS  PubMed  Google Scholar 

  66. Myal Y, Iwasiow B, Yarmill A, Harrison E, Paterson JA, Shiu RP. Tissue-specific androgen-inhibited gene expression of a submaxillary gland protein, a rodent homolog of the human prolactin-inducible protein/GCDFP-15 gene. Endocrinol. 1994; 135: 1605–1610.

    Article  CAS  Google Scholar 

  67. Winderickx J, Hemschoote K, De Clercq N, Van Dijck P, Peeters B, Rombauts W, Verhoeven G, Heyns W. Tissue-specific expression and androgen regulation of different genes encoding rat prostatic 22-kilodalton glycoproteins homologous to human and rat cystatin. Moles Endocrin. 1990; 4: 657–667.

    Article  CAS  Google Scholar 

  68. Ariga H, Edwards J, Sullivan DA. Androgen control of autoimmune expression in lacrimal glands of MRL/Mp-1pr/lpr mice. Clin Immunol Immunopath. 1989; 53: 499–508.

    Article  CAS  Google Scholar 

  69. Vendramini AC, Soo CH, Sullivan DA. Testosterone-induced suppression of autoimmune disease in lacrimal tissue of a mouse model (NZB/NZW F1) of Sjögren’s Syndrome. Invest Ophthalmol Vis Sci. 1991; 32: 3002–3006.

    CAS  PubMed  Google Scholar 

  70. Sato EH, Ariga H, Sullivan DA. Impact of androgen therapy in Sjögren’s syndrome: Hormonal influence on lymphocyte populations and la expression in lacrimal glands of MRL/Mp-Ipr/lpr mice. Invest Ophthalmol Vis Sci. 1992; 33: 2537–2545.

    CAS  PubMed  Google Scholar 

  71. Sato EH, Sullivan DA. Comparative influence of steroid hormones and immunosuppressive agents on autoimmune expression in lacrimal glands of a female mouse model of Sjögren’s syndrome. Invest Ophthalmol Vis Sci. 1993; 35: 2632–2642.

    Google Scholar 

  72. Rocha FJ, Sato EH, Sullivan BD, Sullivan DA. Effect of androgen analogue treatment and androgen withdrawal on lacrimal gland inflammation in a mouse model (MRL/Mp-Ipr/Ipr) of Sjögren’s syndrome. Reg Immunol. 1994; 6: 270–277.

    Google Scholar 

  73. Sullivan DA, Edwards J. Androgen stimulation of lacrimal gland function in mouse models of Sjögren’s syndrome. J Ster Biochem Mol Biol. 1997; 60: 237–245.

    Article  CAS  Google Scholar 

  74. Quintarelli G, Dellovo MC. Activation of glycoprotein biosynthesis by testosterone propionate on mouse exorbital glands. J Histochem Cytochem. 1965; 13: 361–364.

    Article  CAS  PubMed  Google Scholar 

  75. Vercaeren I, Winderickx J, Devos A, Peeters B, Heyns W. An effect of androgens on the length of the poly(A)-tail and alternative splicing cause size heterogeneity of the messenger ribonucleic acids encoding cystatin-related protein. Endocrin. 1992; 131: 2496–2502.

    CAS  Google Scholar 

  76. Vanaken H, Claessens F, Vercaeren I, Heyns W, Peeters B, Rombauts W. Androgenic induction of cystatinrelated protein and the C3 component of prostatic binding protein in primary cultures from the rat lacrimal gland. Mol Cell Endocrinol. 1996; 121: 197–205.

    Article  CAS  PubMed  Google Scholar 

  77. Krawczuk-Hermanowiczowa O. Effect of sex hormones on the lacrimal gland. III. Effects of testosterone and oestradiol and of both these hormones jointly on the morphological appearance of the lacrimal gland in castrated rats. Klin oczna 1983; 85: 337–339.

    CAS  PubMed  Google Scholar 

  78. Radnot VM, Németh B. Wirkung der Testosteronpräparate auf die Tränendrüse. Ophthalmologica 1955; 129: 376–380.

    Article  CAS  PubMed  Google Scholar 

  79. Radnot M, Nemeth B. Testosteronkészitmények hatasa a könnymirigyre. Orvosi Hetilap 1954; 95: 580–581.

    CAS  PubMed  Google Scholar 

  80. Cavallero C, Offner P. Relative effectiveness of various steroids in an androgen assay using the exorbital lacrimal gland of the castrated rat. II. C19-steroids of the 5a-androstane series. Acta Endocrinol. (Copenh.) 1967; 55: 131–135.

    CAS  Google Scholar 

  81. Cavallero C. The influence of various steroids on the Lowenthal lachrymal glands of the rat. Acta Endocrinol Suppl. (Copenh) 1960; 51: 861.

    Google Scholar 

  82. Cavallero C, Chiappino G, Milani F, Casella E. Uptake of 35S Labelled sulfate in the exorbital lacrymal glands of adult and newborn rats under different hormonal treatment. Experentia (Basel) 1960; 16: 429

    Article  CAS  Google Scholar 

  83. Nover A. The influence of testosterone and hypophysine on lacrimal secretion. Arzneimittel-Forschg. 1957; 7: 277–278.

    CAS  Google Scholar 

  84. Appelmans M. La Kerato-conjonctivite seche de Gougerot-Sjogren. Arch ‘Ophtalmologie 1948; 81: 577–588.

    Google Scholar 

  85. Bruckner R. Uber einem erfolgreich mit perandren behandelten fall von Sjogren’schem symptomen komplex. Ophthalmologica 1945; 110: 37–42.

    Article  CAS  PubMed  Google Scholar 

  86. Bizzarro A, Valentini G, Di Marinto G, Daponte A, De Bellis A, Iacono G. Influence of testosterone therapy on clinincal and immunological features of autoimmune diseases associated with Klinefelter’s syndrome. J Clin End Metab. 1987; 64: 32–36.

    Article  CAS  Google Scholar 

  87. Sullivan DA, Allansmith MR. Hormonal influence on the secretory immune system of the eye: endocrine interactions in the control of IgA and secretory component levels in tears of rats. Immunology 1987; 60: 337–343.

    CAS  PubMed  Google Scholar 

  88. Sullivan DA, Hann LE, Vaerman W. Selectivity, specificity and kinetics of the androgen regulation of the ocular secretory immune system. Immunol Invest. 1988; 17: 183–194.

    Article  CAS  PubMed  Google Scholar 

  89. Azzarolo Am, Bjerrum K, Mayes CA, Becker L, Wood RL, Mircheff AK, Warren DW. Hypophysectomyinduced regression of female rat lacrimal glands: Partial restoration and maintenance by dihydrotestosterone and prolactin. Invest Ophthalmol Vis Sci. 1995; 36: 216–226.

    CAS  PubMed  Google Scholar 

  90. Claessens F, Vanaken H, Vercaeren I, Verrijdt G, Haelens A, Schoenmakers E, Alen P, Peeters B, Verhoeven G, Rombauts W, Heyns W. Androgen-regulated transcription in the epithelium of the rat lacrimal gland. Adv Exp Med Biol. 1997: in press.

    Google Scholar 

  91. Sullivan DA, Hann LE. Hormonal influence on the secretory immune system of the eye: endocrine impact on the lacrimal gland accumulation and secretion of IgA and IgG. J Steroid Biochem. 1989; 34: 253–262.

    Article  CAS  PubMed  Google Scholar 

  92. Clark JH, Schrader WT, O’Malley BW. Mechanisms of action of steroid hormones. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology. Philadelphia: WB Saunders; 1992: 35–90.

    Google Scholar 

  93. Rundlett SE, Wu X-P, Miesfeld RL. Functional characterizations of the androgen receptor confirm that the molecular basis of androgen action is transcriptional regulation. Mol Endocr. 1990; 4: 708–714.

    Article  CAS  Google Scholar 

  94. Sullivan DA, Edwards JA, Wickham LA, Pena JDO, Gao J, Ono M, Kelleher RS. Identification and endocrine control of sex steroid binding sites in the lacrimal gland. Curr Eye Res. 1996; 15: 279–291.

    Article  CAS  PubMed  Google Scholar 

  95. Ono M, Rocha FJ, Sullivan DA. Immunocytochemical location and hormonal control of androgen receptors in lacrimal tissues of the female MRL/Mp-1pr/lpr mouse model of Sjögren’s syndrome. Exp Eye Res. 1995; 61: 659–666.

    Article  CAS  PubMed  Google Scholar 

  96. Ota M, Kyakumoto S, Nemoto T. Demonstration and characterization of cytosol androgen receptor in rat exorbital lacrimal gland. Biochem Internat. 1985; 10: 129–135.

    CAS  Google Scholar 

  97. Sullivan DA, Kelleher RS, Vaerman JP, Hann LE. Androgen regulation of secretory component synthesis by lacrimal gland acinar cells in vitro. J Immunol. 1990; 145: 4238–4244.

    CAS  PubMed  Google Scholar 

  98. Hann LE, Kelleher RS, Sullivan D.A. Influence of culture conditions on the androgen control of secretory component production by acinar cells from the lacrimal gland. Invest Ophthalmol Vis Sci. 1991; 32: 2610–2621.

    CAS  PubMed  Google Scholar 

  99. Kelleher RS, Hann LE, Edwards JA, Sullivan DA. Endocrine, neural and immune control of secretory component output by lacrimal gland acinar cells. Jlmmunol. 1991; 146: 3405–3412.

    CAS  Google Scholar 

  100. Lambert RW, Kelleher RS, Wickham LA, Vaerman JP, Sullivan DA. Neuroendocrinimmune modulation of secretory component production by rat lacrimal, salivary and intestinal epithelial cells. Invest Ophthalmol Vis Sci 1994; 35: 1192–1201.

    CAS  PubMed  Google Scholar 

  101. Lambert RW, Kelleher RS, Wickham LA, Vaerman JP, Sullivan DA. Neuroendocrinimmune modulation of secretory component production by rat lacrimal, salivary and intestinal epithelial cells. Invest Ophthalmol Vis Sci 1994; 35: 1192–1201.

    CAS  PubMed  Google Scholar 

  102. Tan J, Joseph DR, Quarmby VE, Lubahn DB, Sar M, French FS, Wilson EM. The rat androgen receptor: primary structure, autoregulation of its messenger ribonucleic acid, and immunocytochemicai localization of the receptor protein. Mol Endocr. 1988; 2: 1276–1285.

    Article  CAS  Google Scholar 

  103. Quarmby VE, Yarbrough WG, Lubahn DB, French FS, Wilson EM. Autologous down-regulation of androgen receptor messenger ribonucleic acid. Mol. Endocr. 1990; 4: 22–28.

    Article  CAS  Google Scholar 

  104. Krongrad A, Wilson CM, Wilson JD, Allman DR, McPhaul MJ. Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells. Mol Cell Endocr. 1991; 76: 79–88.

    Article  CAS  Google Scholar 

  105. Brann DW, Hendry LB, Mahesh VB. Emerging diversities in the mechanism of action of steroid hormones. J Steroid Biochem Mol Biol. 1995; 52: 113–133.

    Article  CAS  PubMed  Google Scholar 

  106. Lewin DI: From outside or in, sex hormones tweak prostate cells. JNIHRes. 1996; 8: 29–30.

    Google Scholar 

  107. Farnsworth WE. Prostate plasma membrane receptor: a hypothesis. Prostate 1991; 19: 329–352.

    Article  CAS  PubMed  Google Scholar 

  108. Kurihara K, Maruyama S, Hosoi K, Sato S, Ueha T, Gresik EW. Regulation of Na’,K’-ATPase in sub-mandibular glands of hypophysectomized male mice by steroid and thyroid hormones. J Histochem Cytochem. 1996; 44: 703–711.

    Article  CAS  PubMed  Google Scholar 

  109. Sullivan DA, Allansmith MR. Source of IgA in tears of rats. Immunol. 1994; 53: 791–799.

    Google Scholar 

  110. Peppard JV, Montgomery PC. Studies on the origin and composition of IgA in rat tears. Immunol. 1987; 62: 194–198.

    Google Scholar 

  111. Verrijdt G, Swinnen J, Peeters B, Verhoeven G, Rombauts W, Claessens R. Characterization of the human secretory component gene promoter. Biochim Biophys Acta 1997; 1350: 147–154.

    Article  CAS  PubMed  Google Scholar 

  112. Talai N, Moutsopoulos HM, Kassan SS, editors. Sjögrens Syndrome. Clinical and Immunological Aspects. Berlin: Springer Verlag; 1987.

    Google Scholar 

  113. Fox RI, editor. Sjögren’s Syndrome. Rheum Dis Clin NA. 1992:vol 18.

    Google Scholar 

  114. Homma M, Sugai S, Tojo T, Miyasaka N, Akizuki M, editors. Sjögren’s Syndrome. State of the Art. Amsterdam: Kugler Press; 1994.

    Google Scholar 

  115. Saito I, Terauchi K, Shimuta M, Nishiimura S, Yoshino K, Takeuchi T, Tsubota K, Miyasaka N. Expression of cell adhesion molecules in the salivary and lacrimal glands of Sjögren’s syndrome. J Clin Lab Anal. 1993; 7: 180–187.

    Article  CAS  PubMed  Google Scholar 

  116. Fox RI, Saito I. Sjögren’s syndrome: immunologic and neuroendocrine mechanisms. Adv Exp Med Biol. 1994; 350: 609–621.

    Article  CAS  PubMed  Google Scholar 

  117. Sullivan DA. Possible mechanisms involved in the reduced tear secretion in Sjögren’s syndrome. In: Homma M, Sugai S, Tojo T, Miyasaka N and Akizuki M, eds. Sjögren’s Syndrome. State of the Art. Amsterdam: Kugler Press; 1994: 13–19.

    Google Scholar 

  118. Xu G, Shang H, Zhu F. Measurement of serum testosterone level in female patients with dry eye. Proceedings of the International Congress of Ophthalmology Meeting (Abstract); 1994.

    Google Scholar 

  119. Lahita R. Sex hormones, Sjögren’s syndrome and the immune response. The Moisture Seekers Newsletter 1991; 8: 1.

    Google Scholar 

  120. Ebling FJ, Ebling E, Randall V, Skinner J. The effects of hypophysectomy and of bovine growth hormone on the responses to testosterone of prostate, preputial, harderian and lachrymal glands and of brown adipose tissue in the rat. J Endocr. 1975; 66: 401–406.

    Article  CAS  PubMed  Google Scholar 

  121. Kyprianou N, Isaacs JT. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988; 122: 552–562.

    Article  CAS  PubMed  Google Scholar 

  122. Kyprianou N, Isaacs JT. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988; 122: 552–562.

    Article  CAS  PubMed  Google Scholar 

  123. Sullivan DA, Krenzer KL, Ullman MD, Wickham LA, Toda I, Bazzinotti D, Dana MR. Androgen control of the meibomian gland. Submitted for publication, 1997.

    Google Scholar 

  124. Mircheff AK. Understanding the causes of lacrimal insufficiency: implications for treatment and prevention of dry eye syndrome. In: Research to Prevent Blindness Science Writers Seminar. New York: Research to Prevent Blindness; 1993: 51–54.

    Google Scholar 

  125. Mircheff AK. Understanding the causes of lacrimal insufficiency: implications for treatment and prevention of dry eye syndrome. In: Research to Prevent Blindness Science Writers Seminar. New York: Research to Prevent Blindness; 1993: 51–54.

    Google Scholar 

  126. Mamalis N, Harrison DY, Hiura G, Hanover R, Meikle AW, Warren DW, Mazer NA. Dry eyes and testosterone deficiency in women. In: Abstracts of the Centennial Annual Meeting of the American Academy of Ophthalmology 1996; p 132.

    Google Scholar 

  127. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA, Bach JF, Dardenne M. Sex steroids, glucocorticoids, stress and autoimmunity. J Ster Biochem Mol Biol. 1991; 40: 619–637.

    Article  CAS  Google Scholar 

  128. Azzarolo AM, Olsen E, Huang ZM, Mircheff AK, Wood RL, Warren DW. Ovariectomy induces apoptosis and necrosis in rabbit lacrimal glands. Prevention by androgen. Invest Ophthalmol Vis Sci. 1997; 38: S1155.

    Google Scholar 

  129. Azzarolo AM, Olsen E, Huang ZM, Mircheff AK, Wood RL, Warren DW. Ovariectomy induces apoptosis and necrosis in rabbit lacrimal glands. Prevention by androgen. Invest Ophthalmol Vis Sci. 1997; 38: S1155.

    Google Scholar 

  130. Mauduit P, Herman G, Rossignol B. Protein secretion induced by isoproterenol or pentoxifylline in lacrimal gland: Cat+ effects. Am J Physiol. 1984; 246: C37 - C44.

    CAS  PubMed  Google Scholar 

  131. Mizokami A, Yeh SY, Chang C. Identification of 3’,5’-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol. 1994; 8: 77–88.

    Article  CAS  PubMed  Google Scholar 

  132. Jumblatt JE, North GT, Hackmiller RC. Muscarinic cholinergic inhibition of adenylate cyclase in the rabbit iris-ciliary body and ciliary epithelium Invest Ophthalmol Vis Sci. 1990; 31: 1103–1108.

    CAS  PubMed  Google Scholar 

  133. Sullivan DA. Influence of the hypothalamic-pituitary axis on the androgen regulation of the ocular secretory immune system. JSteroid Biochem. 1988; 30: 429–433.

    Article  CAS  Google Scholar 

  134. Zhuang YH, Blauer M, Ylikomi T, Tuohimaa P. Spermatogenesis in the vitamin A-deficient rat: possible interplay between retinoic acid receptors, androgen receptor and inhibin alpha-subunit. J Ster Biochem Mol Biol. 1997; 60: 67–76.

    Article  CAS  Google Scholar 

  135. Hall RE, Tilley WD, McPhaul MJ, Sutherland R.L. Regulation of androgen receptor gene expression by steroids and retinoic acid in human breast-cancer cells. Ira J Cancer 1992; 52: 778–784.

    Article  CAS  Google Scholar 

  136. Devos A, Claessens F, Heyns W, Rombauts W, Peeters B. Distinctive interactions of nuclear proteins on the highly homologous promoter regions of two differentially androgen-regulated cystatin-related protein genes. In: Abstracts of the 12th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology ( Berlin, Germany ); 1995; 68 P.

    Google Scholar 

  137. Sheflin LG, Brooks EM, Keegan BP, Spaulding SW. Increased epidermal growth factor expression produced by testosterone in the submaxillary gland of female mice is accompanied by changes in poly-A tail length and periodicity. Endocrinol. 1996; 137: 2085–2092.

    Article  CAS  Google Scholar 

  138. MacLean HE, Warne GL, Zajac JD. Defects of androgen receptor function: from sex reversal to motor neuron disease. Mol Cell Endocr. 1995; 112: 133–141.

    Article  CAS  Google Scholar 

  139. Brinkmann AO, Jenster G, Ris-Stalpers C, van der Korput JAGM, Brüggenwirth HT, Boehmer ALM, Trap-man J. Androgen receptor mutations. J Steroid Biochem Mol Biol. 1995; 53: 443–448.

    Article  CAS  PubMed  Google Scholar 

  140. Martel C, Meiner MH, Gagné D, Simard J, Labrie F. Widespread tissue distribution of steroid sulfatase, 33-hydroxysteroid dehydrogenase/Æ5-Æ4 isomerase (33-HSD), 173-HSD 5a-reductase and aromatase activities in the rhesus monkey. Mol Cell Endocrinol. 1994; 104: 103–111.

    Article  CAS  PubMed  Google Scholar 

  141. Luu-The V, Sugimoto Y, Puy L, Labrie Y, Solache IL, Singh M, Labrie F. Characterization, expression, and immunohistochemical localization of 5a-reductase in human skin. J Invest Dermatol. 1994; 102: 221–226.

    Article  CAS  PubMed  Google Scholar 

  142. Lahita RG. The connective tissue diseases and the overall influence of gender. Int J Fertil. 1996; 41: 156–165.

    CAS  Google Scholar 

  143. Rocha EM, Wickham LA, Silveria LA, Krenzer KL, Toda I, Sullivan DA. Identification of androgen receptor protein and 5a-reductase mRNA in human ocular tissues. Submitted for publication, 1997.

    Google Scholar 

  144. Labrie F, Bélanger A, Simard J, Luu-The V, Labrie C. DHEA and peripheral androgen and estrogen formation: Intracrinology. Ann NYAcad Sci. 1995; 774: 16–28.

    Article  CAS  Google Scholar 

  145. Sooriyamoorthy M, Gower DB, Eley BM. Androgen metabolism in gingival hyperplasia induced by nifedipine and cyclosporin. JPeriodont Res. 1990; 25: 25–30.

    Article  CAS  Google Scholar 

  146. Purohit A, Ghilchik MW, Duncan L, Wang DY, Singh A, Walker MM, Reed MJ. Aromatase activity and interleukin-6 production by normal and malignant breast tissues. J Clin Endocr Metab. 1995; 80: 3052–3058.

    Article  CAS  PubMed  Google Scholar 

  147. Macdiarmid F, Wang D, Duncan LJ, Purohit A, Ghilchick MW, Reed MJ. Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factor alpha. Mol Cell Endocr 1994; 106: 17–21.

    Article  CAS  Google Scholar 

  148. Azzarolo AM, Kaswan RL, Mircheff AK, Warren DW. Androgen prevention of lacrimal gland regression after ovariectomy of rabbits. Invest. Ophthalmol Vis Sci Suppl. 1994; 35: 1793.

    Google Scholar 

  149. Jacobs M, Buxton D, Kramer P, Lubkin V, Dunn M, Herp A, Weinstein B, Southren AL, Perry H. The effect of oophorectomy on the rabbit lacrimal system. Invest Ophthalmol Vis Sci Suppl. 1986; 27: 25.

    Google Scholar 

  150. Huang SM, Azzarolo AM, Mircheff AK, Esrail R, Grayson G, Heller K, Zimmerman K, Feldon S, Warren DW. Does estrogen directly affect lacrimal gland function. Invest Ophthalmol Vis Sci. 1995; 36: 5651.

    Google Scholar 

  151. Coles N, Lubkin V, Kramer P, Weinstein B, Southren L, Vittek J. Hormonal analysis of tears, saliva, and serum from normals and postmenopausal dry eyes. Invest Ophthalmol Vis Sci Suppl. 1988; 29: 48.

    Google Scholar 

  152. Krasso I. Die behandlung der erkrankungen des vorderen bulbusabschnittes mit buckys grenzstrahlen. Ztschr f Augenh. 1930; 71: 1–11.

    Google Scholar 

  153. Lubkin V, Kramer P, Nash R, Bennett G. Evaluation of safety and efficacy of topical 173-estradiol, 0.1% and 0.25%, in postmenopausal dry eye syndrome. In: Abstracts of the Second International Conference on the Lacrimal Gland, Tear Film and Dry Eye Syndromes: Basic Science and Clinical Relevance (Bermuda); 1996: 160.

    Google Scholar 

  154. Azzarolo AM, Mircheff AK, Kaswan R, Warren DW. Hypothesis for an indirect role of estrogens in maintaining lacrimal gland function. Invest Ophthalmol Vis Sci Suppl. 1993; 34: 1466.

    Google Scholar 

  155. Laine M, Tenovuo J. Effect on peroxidase activity and specific binding of the hormone 17b-estradiol and rat salivary glands Arch Oral Biol. 1983; 8: 847–852.

    Article  Google Scholar 

  156. Prijot E, Bazin L, Destexhe B. Essai de traitment hormonal de la keratocon-jonctivite seche. Bull Soc Belge Ophtalmol. 1972; 162: 795–800.

    CAS  PubMed  Google Scholar 

  157. Verbeck B. Augenbefunde und stoffwechselverhalten bei einnahme von ovulationshemmern. Klin Mbl Augenheilk 1973; 162: 612–621.

    CAS  PubMed  Google Scholar 

  158. Saceda M, Lippman ME, Lindsey RK, Puente M, Martin MB. Role of an estrogen receptor-dependent mechanism in the regulation of estrogen receptor mRNA in MCF-7 cells. Mol Endocrinol. 1989; 3: 1782–1787.

    Article  CAS  PubMed  Google Scholar 

  159. Martinazzi M, Baroni C. Controllo ormonale delle ghiandola lacrimale extraorbitale nel topo con nanismo ipofisario. Folia Endocrinol. 1963; 16: 123–132.

    CAS  Google Scholar 

  160. Ostachowicz M, Jettmar A, Laukienicki A. lkdba leczenia zespolu Sjögrena hormonami plciowymi zenskimi. IJtad Lek. 1973; 11: 1075–1077.

    Google Scholar 

  161. Lubkin V, Nash R, Kramer P. The treatment of perimenopausal dry eye syndrome with topical estradiol. Invest Ophthalmol Vis Sci Suppl. 1992; 33: 1289.

    Google Scholar 

  162. Lubkin V, Nash R, Kramer P. The treatment of perimenopausal dry eye syndrome with topical estradiol. Invest Ophthalmol Vis Sci Suppl. 1992; 33: 1289.

    Google Scholar 

  163. Valde G, Ghini M, Gammi L, Passarini M, Schiavi L. Effets des contraceptifs oraux triphases sur la secretion lacrymale. Ophtalmologie 1988; 2: 129–130.

    CAS  PubMed  Google Scholar 

  164. Christ T, Marquardt R, Stodtmeister R, Pillunat LE. Zur Beeinflussung der tränenfilmaufreibzeit durch hormonale kontrazeptiva. Fortschr Ophthalmol. 1986; 83: 108–111.

    CAS  PubMed  Google Scholar 

  165. Brennan NA, Efron N. Symptomatology of HEMA contact lens wear. Optom Vis Sci. 1989; 66: 834–838.

    Article  CAS  PubMed  Google Scholar 

  166. Gurwood AS, Gurwood I, Gubman DT, Brzezicki. Idiosyncratic ocular symptoms associated with the estradiol transdermal estrogen replacement patch. Optom Vis Sci. 1995; 72: 29–33.

    Article  CAS  PubMed  Google Scholar 

  167. Medical economics data of Medical Economics Co, Inc. Physicians Desk Reference. Montvale, NJ, 1993: 895–898.

    Google Scholar 

  168. Carlsten H, Tarkowski A, Holmdahl R, Nilsson LA. Oestrogen is a potent disease accelerator in SLE-prone MRL]pr/Ipr mice. Clin exp Immunol. 1990; 80: 467–473.

    Article  CAS  PubMed  Google Scholar 

  169. Ahmed SA, Aufdemorte TB, Chen JR, Montoya AI, Olive D, Talal N. Estrogen induces the development of autoantibodies and promotes salivary gland lymphoid infiltrates in normal mice. J Autoimmunity 1989; 2: 543–552.

    Article  CAS  Google Scholar 

  170. Homo-Delarche F, Durant S. Hormones, neurotransmitters and neuropeptides as modulators of lymphocyte functions. In: Rola-Pleszczynski M, editor. Handbook of Immunopharmacology. London: Academic Press Ltd; 1994: 169–240.

    Google Scholar 

  171. Cutolo M, Sulli A, Seriolo B, Masi AT. Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol. 1995; 13: 217–226.

    CAS  PubMed  Google Scholar 

  172. Ahmed SA, Talal N. Importance of sex hormones in systemic lupus erythematosus. In: Wallace D, Hahn B, editors. Dubois ‘Lupus Erythematosus. Philadelphia: Lea & Febiger 1993; 148–156.

    Google Scholar 

  173. Newton CJ, Arzt E, Stalla GK. Involvement of the estrogen receptor in the growth response of pituitary tumor cells to interleukin-2. Biochem Biophys Res Commun. 1994; 205: 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  174. Jung-Testas I, Lebeau MC, Catelli MG, Baulieu EE. Cyclosporin A promotes nuclear transfer of a cytoplasmic progesterone receptor mutant. Comptes Rendus de 1 Academie des Sciences–Serie Iii, Sciences de la Vie 1995; 318: 873–878.

    CAS  PubMed  Google Scholar 

  175. Jahn R, Padel U, Porsch PH, Soling HD. Adrenocorticotrophic hormone and alpha-melanocyte stimulating hormone induce secretion and protein phosphorylation in the rat lacrimal gland by activation of a cAMPdependent pathway. Eur J Biochem. 1982; 126: 623–629.

    Article  CAS  PubMed  Google Scholar 

  176. Leiba H, Gaily NB, Schmidt-Sole J, Piterman O, Azrad A, Salomon Y. The melanocortin receptor in the rat lacrimal gland: a model system for the study of MSH (melanocyte stimulating hormone) as a potential neurotransmitter. Eur J Pharmacol. 1990; 181: 71–82.

    Article  CAS  PubMed  Google Scholar 

  177. Cripps MM, Bromberg BB, Patchen-Moor K, Welch MN. Adrenocorticotropic hormone stimulation of lacrimal peroxidase secretion. Exp Eye Res. 1987; 45: 673–683.

    Article  CAS  PubMed  Google Scholar 

  178. Entwistle ML, Hann LE, Sullivan DA, Tatro JB. Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides 1990; 11: 477–483.

    Article  CAS  PubMed  Google Scholar 

  179. Martinazzi M. Effetti dell’ipofisectomia sulla ghiandola lacrimale extraorbitale del ratto. Folia Endocrinol. 1962; 150: 120–129.

    Google Scholar 

  180. Minami A, Kamel T. Sur la glande lacrymale extérieure chez le rat et ses modifications aprés hypophysectomie. Compt rend Séanc Soc Biol. 1959; 153: 269–273.

    CAS  Google Scholar 

  181. Wegelius O, Friman C. Two different pituitary-controlled sulphation mechanisms in the rat. Acta Medica Scand Suppl. 1964; 412: 221–228.

    CAS  Google Scholar 

  182. Pochin EE. The mechanism of experimental exophthalmos caused by pituitary extracts. Ciba Foundation Colloquia on Endocrinology 1952; 4: 316–326.

    Google Scholar 

  183. Ebling FJ, Ebling E, Randall V, Skinner J. The synergistic action of alpha-melanocyte stimulating hormone and testosterone on the sebaceous, prostate, preputial, harderian and lachrymal glands, seminal vesicles and brown adipose tissue in the hypophysectomized-castrated rat. JEndocr. 1975; 66: 407–412.

    Article  CAS  Google Scholar 

  184. Frey WH, Nelson JD, Frick ML, Elde RP. Prolactin immunoreactivity in human tears and lacrimal gland: Possible implications for tear production. In: Holly FJ, editor. The Preocular Tear Film: In Health, Disease and Contact Lens Wear. Lubbock, TX: Dry Eye Institute; 1986: 798–807.

    Google Scholar 

  185. Wood RL, Park K-H, Gierow JP, Mircheff AK. Immunogold localization of prolactin in acinar cells of lacrimal gland. Adv Exp Med Biol. 1994; 350: 75–77.

    Article  CAS  PubMed  Google Scholar 

  186. Mircheff AK, Warren DW, Wood RL, Tortoriello PJ, Kaswan RL. Prolactin localization, binding, and effects on peroxidase release in rat exorbital lacrimal gland. Invest Ophthalmol Vis Sci. 1992; 33: 641–650.

    CAS  PubMed  Google Scholar 

  187. Markoff E, Lee DW, Fellows JL, Nelson JD, Frey WH. Human lacrimal glands synthesize and release prolactin. Endocrinol Suppl. 1995; 152: 440A.

    Google Scholar 

  188. Zhang J, Whang G, Gierow J, Warren D, Mircheff A, Wood R. Prolactin receptors are present in rabbit lacrimal gland. Invest Ophthalmol Vis Sci. 1995; 36: S991.

    Google Scholar 

  189. Warren DW, Platler BW, Azzarolo AM, Huang ZM, Wang G, Wood RL, Mircheff AK. Pilocarpine stimulates prolactin secretion by rabbit lacrimal glands. Invest Ophthalmol Vis Sci. 1995; 36: S651.

    Google Scholar 

  190. Azzarolo AM, Kaswan RL, Huang ZM, Platler BW, Mircheff AK, Warren DW. Is lacrimal gland prolactin content regulated? Invest Ophthalmol Vis Sci. 1995; 36: S651.

    Google Scholar 

  191. Narukawa S, Kanzaki H, Inoue T, Imai K, Higuchi T, Hatayama H, Kariya M, Mori T. Androgens induce prolactin production by human endometrial stromal cells in vitro. J Clin Endocrinol Metab. 1994; 78: 165–168.

    Article  CAS  PubMed  Google Scholar 

  192. Nevalainen MT, Martikainen P, Valve EM, Ping W, Nurmi M, Härkönen PL. Prolactin regulation of rat and human prostate. In: Abstracts of the 12th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology ( Berlin, Germany ) 1995; 53 P.

    Google Scholar 

  193. Reiter E, Bonnet P, Sente B, Dombrowicz D, de Leval J, Closset J, Hennen G. Growth hormone and prolactin stimulate androgen receptor, insulin-like growth factor-I (IGF-I) and IGF-I receptor levels in the prostate of immature rats. Mol Cell Endocrinol. 1992; 88: 77–87.

    Article  CAS  PubMed  Google Scholar 

  194. McBlain WA, Hoffman RA, Buzzell GR. Androgen receptor in the harderian glands of the golden hamster: characterization and the effects of androgen deprivation, the pituitary, and gender. J Exp Zoology 1994; 268: 442–451.

    Article  CAS  Google Scholar 

  195. Reber PM. Prolactin and immunomodulation. Amer J Med. 1993; 95: 637–644.

    Article  CAS  PubMed  Google Scholar 

  196. McMurray R, Keisler D, Kanuckel K, Izui S, Walker SE. Prolactin influences autoimmune disease activity in the female B/W mouse. Jlmmunol. 1991; 147: 3780–3787.

    CAS  Google Scholar 

  197. Hann LE, Tatro J, Sullivan DA. Morphology and function of lacrimal gland acinar cells in primary culture. Invest Ophthalmol Vis Sci. 1989; 30: 145–158.

    CAS  PubMed  Google Scholar 

  198. Khong PL, Peh WC, Low LC, Leong LL. Variant of the Triple A syndrome. Australasian Radiol. 1994; 38: 222–224.

    Article  CAS  Google Scholar 

  199. Heinrichs C, Tsigos C, Deschepper J, Drews R, Collu R, Dugardeyn C, Goyens P, Ghanem GE, Bosson D, Chrousos GP. et al. Familial adrenocorticotropin unresponsiveness associated with alacrima and achalasia: biochemical and molecular studies in two siblings with clinical heterogeneity. Eur J Pediatrics 1995; 154: 191–196.

    CAS  Google Scholar 

  200. Tsigos C, Arai K, Latronico AC, DiGeorge AM, Rapaport R, Chrousos GP. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome. J Clin Endocrinol & Metab. 1995; 80: 2186–2189.

    Article  CAS  Google Scholar 

  201. Chavez M, Moreno C, Perez A, Garcia F, Solis J, Cargone A, Astete M, Contardo C. Sindrome de Allgrove (acalasia-alacrima-insuficiencia adrenal): Reporte de un caso. Revista de Gastroenterologia del Peru 1996; 16: 153–157.

    CAS  PubMed  Google Scholar 

  202. Djeridane Y. Immunohistochemical evidence for the presence of vasopressin in the rat harderian gland, retina and lacrimal gland. Exp Eye Res. 1994; 59: 117.

    Article  CAS  PubMed  Google Scholar 

  203. Kahan IL, Varsanyi-Nagy M, Toth M, Nadrai A. The possible role of tear fluid thyroxine in keratoconus development. Exp Eye Res. 1990; 50: 339–343.

    Article  CAS  PubMed  Google Scholar 

  204. Ramos-Remus C, Suarez-Almazor M, Russell AS. Low tear production in patients with diabetes mellitus is not due to Sjogren’s syndrome. Clin Exp Rheumatol. 1994; 12: 375–380.

    CAS  PubMed  Google Scholar 

  205. Stolwijk TR, Kuizenga A, van Haeringen NJ, Kijlstra A, Oosterhuis JA, van Best JA. Analysis of tear fluid proteins in insulin-dependent diabetes mellitus. Acta Ophthalmologica 1994; 72: 357–362.

    Article  CAS  PubMed  Google Scholar 

  206. Gause I, Isaksson O, Lindahl A, Eden S. Effect of insulin treatment of hypophysectomized rats on adipose tissue responsiveness to insulin and growth hormone. Endocrinol. 1985; 116: 945.

    Article  CAS  Google Scholar 

  207. Heinze E, Kleine, W, Voigt KH. Insulin release in rats 1 and 5 days after hypophyectomy. Horm Res. 1981; 14: 243.

    Article  CAS  PubMed  Google Scholar 

  208. Van Lan V, Yamaguchi N, Garcia MJ, Ramey ER, Penhos JC. Effect of hypophysectomy and adrenalectomy on glucagon and insulin concentrations. Endocrinol. 1974; 94: 671–675.

    Article  Google Scholar 

  209. Tabbara KF, Frayha RA. Alternate-day steroid therapy for patients with primary Sjögren’s syndrome. Ann Ophthalmol. 1983; 15: 358–361.

    CAS  PubMed  Google Scholar 

  210. Nasu M, Matsubara O, Yamamoto H. Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases. J Pathol. 1984; 143: 11–15.

    Article  CAS  PubMed  Google Scholar 

  211. Fox PC, Datiles M, Atkinson JC, Macynski AA, Scott J, Fletcher D, Valdez IH, Kurrasch RHM, Delapenha R, Jackson W. Prednison and piroxicam for treatment of primary Sjögren’s syndrome. Clin Exp Rheumatol. 1993; 11: 149–156.

    CAS  PubMed  Google Scholar 

  212. Singh G, Kaur J. Iatrogenic dry eye: late effect of topical steroid formulations. J Indian Med Assoc. 1992: 90: 235–237.

    CAS  PubMed  Google Scholar 

  213. Wilson SE, Lloyd SA, Kennedy RH. Fibroblast growth factor receptor-1, interleukin-1 receptor, and glucocorticoid receptor messenger RNA production in the human lacrimal gland. Invest Ophthalmol Vis Sci. 1993; 34: 1977–1982.

    CAS  PubMed  Google Scholar 

  214. Perkovich CL, Ubels JL, Lee SY, Soprano DR. Cellular retinol-binding protein and cellular retinoic acid-binding protein in the lacrimal gland. Exp Eye Res. 1993; 56: 513–519.

    Article  CAS  PubMed  Google Scholar 

  215. Yamaguchi K, Gaur VP, Young RW, Sweatt AJ. Cellular retinoic acid-binding protein in rat lacrimal gland. Invest Ophthalmol Vis Sci. 1991; 32: 3273–3276.

    CAS  PubMed  Google Scholar 

  216. Ubels JL, Dennis MH, Rigatti BW, Vergnes JP, Beatty R, Kinchington PR. Nuclear retinoic acid receptors in the lacrimal gland. Curr Eye Res. 1995; 14: 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  217. Ubels JL, Osgood TB. 13-cis retinoyl-beta-glucuronide in lacrimal gland fluid of rabbits treated with 13-cis retinoic acid. J Ocular Pharmacol. 1990; 6: 321–327.

    Article  CAS  Google Scholar 

  218. Rismondo V, Ubels JL. Isotretinoin in lacrimal gland fluid and tears. Arch Ophthalmol. 1987; 105: 416–420.

    Article  CAS  PubMed  Google Scholar 

  219. Ubels JL, Dennis M, Lantz W. The influence of retinoic acid on growth and morphology of rat exorbital lacrimal gland acinar cells in culture. Curr Eye Res. 1994; 13: 441–449.

    Article  CAS  PubMed  Google Scholar 

  220. Rismondo V, Ubels JL, Osgood TB. Tear secretion and lacrimal gland function of rabbits treated with isotretinoin. JAm Acad Dermatol. 1988; 19: 280–285.

    Article  CAS  Google Scholar 

  221. Vercaeren I, Vanaken H, Devos A, Peeters B, Verhoeven G, Heyns W. Androgens transcriptionally regulate the expression of cystatin-related protein and the C3 component of prostatic binding protein in rat ventral prostate and lacrimal gland. Endocrinol. 1996; 137: 4713–4720.

    Article  CAS  Google Scholar 

  222. Lima PH, Georges SA, Remington SG, Nelson JD. mRNA in mouse lacrimal gland with homology to salivary androgen-binding protein. Invest Ophthalmol Vis Sci. 1997; 38: S148.

    Google Scholar 

  223. Sullivan DA. Gender, sex steroids and dry eye. In: Research to Prevent Blindness Science Writers Seminar. New York: Research to Prevent Blindness, 1997: in press.

    Google Scholar 

  224. Yolton DP, Yolton RL, Lopez R, Bogner B, Stevens R, Rao D. The effects of gender and birth control pill use on spontaneous blink rates. JAmer Optom Assoc. 1994; 65: 763–770.

    CAS  Google Scholar 

  225. Öhman L. Topical estrogen treatment of postmenopausal chronic conjunctivitis. In: Abstracts of the IVth International Congress of the International Society of Dacryology ( Stockholm, Sweden ); 1996: 91.

    Google Scholar 

  226. Stubbs AP, Lalani EN, Stamp GW, Hurst H, Abel P, Waxman J. Second messenger up-regulation of androgen receptor gene transcription is absent in androgen insensitive human prostatic carcinoma cell lines, PC-3 and DU-145. FEBS Letters 1996; 383: 237–240.

    Article  CAS  PubMed  Google Scholar 

  227. Wilder RL. Adrenal and gonadal steroid hormone deficiency in the pathogenesis of rheumatoid arthritis. J Rheumatol Suppl. 1996; 44: 10–12.

    CAS  PubMed  Google Scholar 

  228. Ormandy CJ, Clarke CL, Kelly PA, Sutherland RL. Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. Int J Cancer 1992; 50: 777–782.

    Article  CAS  PubMed  Google Scholar 

  229. Smirnova OV, Petraschuk OM, Kelly PA. Immunocytochemical localization of prolactin receptors in rat liver cells: I. Dependence on sex and sex steroids. Mol Cell Endocrinol: 1994; 105: 77–81.

    Article  CAS  PubMed  Google Scholar 

  230. Wright LL, Luebke JL. Somatostatin-, vasoactive intestinal polypeptide-and neuropeptide Y-like immunoreactivity in eye-and submandibular gland-projecting sympathetic neurons. Brain Res. 1989; 494: 267–275.

    Article  CAS  PubMed  Google Scholar 

  231. Turner N, Mortimer ML, Roberts J. Gender differences in the effect of age on adrenergic neurotransmission in the heart. Exp Gerontol. 1992; 27: 301–307.

    Article  Google Scholar 

  232. Li Z, Duckles SP. Influence of gender on vascular reactivity in the rat. J Pharm Exp Therapeutics 1994; 268: 1426–1431.

    CAS  Google Scholar 

  233. Durban EM, Nagpala PG, Barreto PD, Durban E. Emergence of salivary gland cell lineage diversity suggests a role for androgen-independent epidermal growth factor receptor signaling. J Cell Sci. 1995; 108: 2205–2212.

    CAS  PubMed  Google Scholar 

  234. Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Janne OA. Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinol. 1994; 135: 1359–1366.

    Article  CAS  Google Scholar 

  235. Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N., Cheng H, Matusik RJ et al. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994; 367: 480–483.

    Article  CAS  PubMed  Google Scholar 

  236. Culig Z, Hobisch A, Cronauer MV, Hittmair A, Radmayr C, Bartsch G, Klocker H. Activation of the androgen receptor by polypeptide growth factors and cellular regulators. World J Urol. 1995; 13: 285–289.

    Article  CAS  PubMed  Google Scholar 

  237. Nakhla AM, Romas NA, Rosner W. Estradiol activates the prostate androgen receptor and prostate-specific antigen secretion through the intermediacy of sex hormone-binding globulin. J Biol Chem. 1997; 272: 6838–6841.

    Article  CAS  PubMed  Google Scholar 

  238. Kaku K. Experimental studies on the function of the lacrimal gland. II. Report histological findings of various endocrine glands in lacrimotectomized rats. Acta Soc Ophthalmol Jpn. 1955; 59: 975–979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sullivan, D.A., Wickham, L.A., Rocha, E.M., Kelleher, R.S., da Silveira, L.A., Toda, I. (1998). Influence of Gender, Sex Steroid Hormones, and the Hypothalamic-Pituitary Axis on the Structure and Function of the Lacrimal Gland. In: Sullivan, D.A., Dartt, D.A., Meneray, M.A. (eds) Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Advances in Experimental Medicine and Biology, vol 438. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5359-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5359-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7445-9

  • Online ISBN: 978-1-4615-5359-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics