Skip to main content

Magnetic Microactuators

  • Chapter
Microactuators

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 4))

  • 237 Accesses

Abstract

Magnetic actuators are perhaps among the oldest types of actuators. They are used in everyday appliances in the form of relays, electromotors and automatic valves. Magnetic actuation methods offer the possibility of generating repulsive forces in addition to attractive forces. This is in contrast to electrostatic schemes which offer only attractive forces. In most cases, the force versus displacement relationship in these devices is also much better behaved than in coulombic electrostatic actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. C. Webb, “Status of Ferrite Technology for High Volume Microwave Applications.” In: Materials and Processes for Wireless Communications. Edited by T. Negas and H. Ling, Ceramic Transactions, Volume 53, The American Ceramic Society, pp. 11–26 (1995).

    Google Scholar 

  2. M. Tabib-Azar and A. Garcia, “Sensing Means and Sensor Shells: A New Method of Comparative Study of Piezoelectric, Piezoresistive, Electrostatic, Magnetic, and Optical Sensors.” Sensors and Actuators A, Vol. 48, pp. 87–100 (1995).

    Article  Google Scholar 

  3. I. J. Busch-Vishniac, “The Case for Magnetically Driven Microactuators.” Sensors and Actuators A Vol. 33(3), pp. 207–220 (1992).

    Article  Google Scholar 

  4. J. A. Von Arx and K. Najafi, “On-Chip Coils with Integrated Cores for Remote Inductive Powering of Integrated Microsystems.” Transducers ′97, pp. 999–1002 (1997).

    Google Scholar 

  5. P. A. Neukomm and H. Kundig, “Passive Wireless Actuator Control and Sensor Signal Transmission.” Sensors and Actuators, A21-A23, pp. 258–262 (1990).

    Google Scholar 

  6. J. R. Long and M. A. Copeland, “The Modeling, Characterization, and Design of Monolithic Inductors for Si RF IC’s.” IEEE Journal of Solid-State Circuits, Vol. 32(3), pp. 357–369 (1997).

    Article  Google Scholar 

  7. J. N. Burghartz, K. A. Jenkins and M. Soyuer, “Multilevel-Spiral Inductors Using VLSI Interconnect Technology.” IEEE Electron Devices Letters, Vol. 17(9), pp. 428–430 (1996). (b) C. P. Yue, C. Ryu, J. Lau, T. H. Lee and S. S. Wong, “A Physical Model for Planar Spiral Inductors on Silicon.” Proceedings of International Electronic Devices Meeting ′96, pp. 155-158 (1996).

    Article  Google Scholar 

  8. H. M. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors.” IEEE Transaction on Parts, Hybrids, and Packaging, Vol. PHP-10(2), pp. 101–109 (1974).

    Article  Google Scholar 

  9. A. A. Abidi, “Low-Power Radio-Frequency IC’s for Portable Communications.” Proceedings of the IEEE, Vol. 83(4), pp. 544–569 (1995).

    Article  Google Scholar 

  10. W. Affane and T. S. Birch, “A Microminiature Electromagnetic Middle-Ear Implant Hearing Device.” Sensors and Actuators A 46-47, pp. 584–587 (1995).

    Article  Google Scholar 

  11. J. M. D. Coey, “Introduction.” In: Rare-Earth Iron Permanent Magnets. Edited by J. M. D. Coey, Oxford University Press, Oxford GB, pp. 6–10 (1996).

    Google Scholar 

  12. H. H. Woodson, J. R. Melcher, Electromechanical Dynamics. Part I: Discrete Systems. John Wiley & Sons, Inc., New York (1968).

    Google Scholar 

  13. H. H. Woodson, J. R. Melcher, Electromechanical Dynamics. Part II: Field. Forces and Motion. John Wiley & Sons, Inc., New York (1968).

    Google Scholar 

  14. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism. Addison-Wesley Publishing Company Inc., Reading MA, (1955).

    MATH  Google Scholar 

  15. J. C. Slater and N. H. Frank, Electromagnetism. McGraw-Hill, New York (1947).

    MATH  Google Scholar 

  16. P. Robert, Electrical and Magnetic Properties of Materials. Artech House, Boston, MA (1988).

    Google Scholar 

  17. S. Ramo, J. R. Whinnery and T. Van Duzer, “Fields and Waves in Communication Electronics.” 3rd edition, John Wiley & Sons, Inc., New York (1994).

    Google Scholar 

  18. G. Burns, “Solid-State Physics.” Academic Press, San Diego (1985).

    Google Scholar 

  19. R. Neale, “Taming the Giant Magneto Resistance (GMR) Effect.” Electronic Engineering, April issue, pp. 36–40, (1996).

    Google Scholar 

  20. Joel S. Miller and Arthur J. Epstein, “Molecular and Polymeric Magnets.”

    Google Scholar 

  21. R.L. Smith, R.W. Bower, and S.D. Collins, “The Design and Fabrication of a Magnetically Actuated Micromachined Flow Valve.” Sensors and Actuators, A24, pp. 47–53 (1990).

    Google Scholar 

  22. Z. Nami, C.H. Ahn and M.G. Allen, “An Energy-Based Design Criterion for Magnetic Microactuators.” J. Micromech. Microeng. Vol. 6, pp. 337–344 (1996).

    Article  Google Scholar 

  23. H. Hauser, “Automatic Quality Control of Small Relays and Their Magnetic Parts.” Sensors and Actuators A 46-47, pp. 588–592 (1995).

    Article  Google Scholar 

  24. J. W. Judy and R. S. Muller, “Magnetic Microactuation of Torsional Polysilicon Structures.” Sensors and Actuators A 53, pp. 392–397 (1996).

    Article  Google Scholar 

  25. H. Hosaka, H. Kuwano and K. Yanagisawa, “Electromagnetic Microrelays: Concepts and Fundamental Characteristics.” Sensors and Actuators A, 40, pp. 41–47 (1994).

    Article  Google Scholar 

  26. D. Bosch, B. Heimhofer, G. Muck, H. Seidel, U. Thumser and W. Weiser, “A Silicon Microvalve with Combined Electromagnetic/Electrostatic Actuation.” Sensors and Actuators A Vol. 37-38, pp. 684–692 (1993).

    Article  Google Scholar 

  27. M. A. Butler, S. J. Martin, J. J. Spates and M-A Mitchell, “Magnetically-Excited Flexural Plate Wave Devices.” Transducers ′97, pp. 1031–1034 (1997).

    Google Scholar 

  28. V. I. Aksinin, V.V. Apollonov, V.I. Borodin, A.S. Brynskikh, S.A. Chetkin, S.V. Murav’ev, V.V. Ostanin, and G.V. Vdovin, “Spring-type Magnetostriction Actuator Based on the Wiedmann Effect.” Sensors and Actuators, A21-A23, pp. 236–242 (1990).

    Google Scholar 

  29. J. A. Granath, “Instrumentation Application of Inverse-Wiedemann Effect.” Journal of Applied Physics Vol. 31(5), pp. 178S–180S (1966).

    Article  Google Scholar 

  30. E. Quandt and K. Seemann, “Fabrication and Simulation of Magnetostrictive Thin-Film Actuators.” Sensors and Actuators A 50, pp. 105–109 (1995).

    Article  Google Scholar 

  31. Yong-Kweon Kim, M. Katsurari, and H. Fujita, “A Superconducting Actuator Using the Meissner Effect.” Sensors and Actuators, Vol. 20, pp. 33–40 (1989).

    Article  Google Scholar 

  32. Yong-Kweon Kim, and M. Katsurari, “A Levitation-type Synchronous Micro-Actuator Using the Meissner Effect of High-Tc Superconductors.” Sensors and Actuators, A29, pp. 143–150 (1991).

    Google Scholar 

  33. A. B. Frazier, C. H. Ahn and M. G. Allen, “Development of Micromachined Devices using Polyimide-Based Processes.” Sensors and Actuators A 45, pp. 47–55 (1994).

    Article  Google Scholar 

  34. F. J. Cadieu, H. Hegde, A. Navarathna, R. Rani and K. Chen, “High-Energy Product ThMn12 Sm-Fe-T and Sm-Fe Permanent Magnets Synthesized as Oriented Sputtered Films.” Appl. Phys. Lett. Vol. 59, pp. 875–877 (1991).

    Article  Google Scholar 

  35. H. Guckel, T. Earles, J. Klein, J. D. Zook and T. Ohnstein, “Electromagnetic Linear Actuators with Inductive Position Sensing.” Sensors and Actuators A 53, pp. 386–391 (1996).

    Article  Google Scholar 

  36. A. Bruno Frazier, C. H. Ahn and M. G. Allen, “Development of Micromachined Devices Using Polyimide-Based Processes.” Sensors and Actuators A 45, pp. 47–55 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabib-Azar, M. (1998). Magnetic Microactuators. In: Microactuators. Electronic Materials: Science and Technology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5445-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5445-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8089-4

  • Online ISBN: 978-1-4615-5445-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics