Skip to main content

Calcium Phosphates: Structure, Composition, Solubility, and Stability

  • Chapter
Calcium Phosphates in Biological and Industrial Systems

Abstract

Calcium phosphates are important materials in the fields of biology, geology, industry, medicine, and dentistry. Their formation, functions, and applications depend on their structure, composition, solubility, and stability. These related basic properties have been extensively studied; the literature is vast and interdisciplinary.1–3An overview of these physicochemical properties is presented in this chapter with the compound of greatest interest and importance, hydroxyapatite (OHAp), discussed in more detail; a standard reference material of OHAp4 is used as an example in discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeGeros RZ. Calcium Phosphates in Oral Biology. Basel: Karger, 1991.

    Google Scholar 

  2. Elliot JC. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier, 1994.

    Google Scholar 

  3. Dessens FCM. Mineral Aspects of Dentistry. Basel: Karger, 1982.

    Google Scholar 

  4. Standard Reference Material 2910: Calcium Hydroxyapatite, to be issued by National Institute of Standards and Technology, Standard Reference Materials Program, Gaithersburg, MD.

    Google Scholar 

  5. Brown WE, Smith JP, Lehr JR, Frazier AW. Crystallography of hydrated monocalcium phosphates containing potossium or ammonium. J PhysChem 1958;62:625–627

    Google Scholar 

  6. Dickens B, Bowen JS. Refinement of the crystal structure of Ca(H2PO4)H2O. Acta Cryst 1971;B27:2247–2255

    Article  Google Scholar 

  7. Dickens B, Prince E, Schroeder LW, Brown WE. Ca(H2PO4)2, a crystal structure containing unusual hydrogen bonding. Acta Cryst 1973;B29(Pt.10):2057–2070

    Article  Google Scholar 

  8. Schroeder LW, Prince E, Dickens B. Hydrogen bonding in Ca(H2PO4)2H2O as determined by neutron diffraction. Acta Cryst 1975;B31(PL 1):9–12

    Article  Google Scholar 

  9. Jones DW, Smith JAS. The structure of brushite, CaHPO4.2H2O. J Chem Soc 1962;1414–1420

    Google Scholar 

  10. Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation. J Chem Soc A 1971;3725–3729

    Google Scholar 

  11. Dickens B, Bowen JS, Brown WE. A refinement of the crystal structure of CaHPO4 (synthetic monetite). Acta Cryst 1972;B28:797–806

    Article  Google Scholar 

  12. Catti M, Ferraris G, Mason SA. Low-temperature ordering of hydrogen atoms in CaHPO4 (Monetite): x-ray and neutron diffraction study at 145 K. Acta Cryst 1980;B36:254–259

    Article  Google Scholar 

  13. Mathew M, Schroeder LW. Dickens B, Brown WE. The Crystal Structure of a-Ca3(PO4)2. Acta Cryst 1977;B33:1325–1333

    Article  Google Scholar 

  14. Schroeder LW, Dickens B, and Brown, W.E. Crystallographic studies of the role of Mg as a stabilizing impurity in p-Ca3(PO4)2 II. Refinement of Mg-containing β-Ca3(PO4)2. J Solid State Chem 1977;22:253–262

    Article  Google Scholar 

  15. Brown WE, Mathew M, Tung MS. Crystal chemistry of octacalcium phosphate. Prog Crystal Growth Charact 1981;4:59–87 (Oxford, England: Pergamon Press Ltd.)

    Google Scholar 

  16. Mathew M, Brown WE, Schroeder LW, Dickens B. Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate, Ca8(HPO4)2(PO4)45H2O. J Cryst and Spectr Res 1988;18(3):235–250

    Article  Google Scholar 

  17. Gopal R, Calvo C, Ito J, Sabine WK. Crystal structure of synthetic Mg-whitlockite, Ca8Mg2H2(PO4)14. Can J Chem 1974;52:1155–1164

    Article  Google Scholar 

  18. Elliot JC, Mackie PE, Young RA. Monoclinic hydroxapatite. Science 1973;180:1055–1057

    Article  Google Scholar 

  19. Posner AS, Perloff A, Diorio AF. Refinement of the hydroxyapatite structure. Acta Cryst 1958;308–309

    Google Scholar 

  20. Sudarsanan K, Markie PE, Young RA. Comparison of synthetic and mineral fluorapatite, Ca3(PO4)3F, in Crystallographic Detail. Mat Res Bull 1972;7:1331–1338

    Article  Google Scholar 

  21. Makie PE, Elliot JC, Young RA. Monoclinic structure of synthetic Ca5(PO4)3Cl, chlorapatite. Acta Cryst 1972;B28:1840–1848

    Article  Google Scholar 

  22. Elliott JC, Bonel G, Trombe JC. Space group and lattice constants of Ca3(PO4)3CO3. J Appl Cryst 1980;13:618–621

    Article  Google Scholar 

  23. Brown WE, Epstein EF. Crystallography of tetracalcium phosphate. J Res NBS (Phys and Chem) 1965;47

    Google Scholar 

  24. Dickens B, Brown WE, Kruger GJ, Stewart JM. Ca4(PO)4O2 tetracalcium diphosphate monoxide, crystal structure and relationships to Ca5(PO4)3OH and K3Na(SO4)2. Acta Cryst 1973;10:2046–2056

    Article  Google Scholar 

  25. LeGeros RZ, Trautz OR, LeGeros JP, Shirra WP. Apatite crystallites: Effects of carbonate on morphology. Science 1967,155:1409–1411

    Article  Google Scholar 

  26. Young RA, Holcomb DW. Variability of hydroxyapatite preparations. Calcif Tissue Int 1982;34:S17–S32

    Google Scholar 

  27. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatite utilizing isotopic substitution. Inorg Chem 1974; 13:194–207

    Article  Google Scholar 

  28. Fowler BO. Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra-structure-composition correlations. Inorg Chem 1974;13:207–214

    Article  Google Scholar 

  29. Casciani F, Condrate RA. The vibrational spectra of brushite, CaHPO4.2H2O. Spectrosc Lett 1979;12:699–713

    Article  Google Scholar 

  30. Fowler BO, Moreno EC, Brown WE. Infared spectra of hydroxyapatite, octacalcium phosphate and pyrolyzed octacalcium phosphate. Arch Oral Biol 1966; 11:477–492

    Article  Google Scholar 

  31. Casciani F, Condrate RA. The raman spectrum of monetite, CaHPO4. J Solid State Chem 1980;34:385–388

    Article  Google Scholar 

  32. Tropp J, Blumenthal NC, Waugh JS. Phosphous NMR study of solid amorphous calcium phosphate. J Am Chem Soc 1983;105:22–26

    Article  Google Scholar 

  33. Yesinowski JP, Eckert H. Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. J Am Chem Soc 1987; 109:6274–6282

    Article  Google Scholar 

  34. Rothwell WP, Waugh JS, Yesinowski JP. High-resolution variable-temperature 31P NMR of solid calcium phosphates. J Am Chem Soc 1980;102:2637–2643

    Article  Google Scholar 

  35. Betts F, Posner AS. An xray radial distribution study of amorphous calcium phosphate. Mater Res Bull 1974;9:353–360

    Article  Google Scholar 

  36. Grynpas MD, Bonar LC, Glimcher MJ. X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates. J Mater Sci 1984;19:723–736

    Article  Google Scholar 

  37. Harries JE, Hukins DWL, Holt C, Hasnain SS. Conversion of amorphous calcium phosphate into hydroxyapatite investigated by EXAFS spectroscopy. J Crystal Growth 1987;84:563–570

    Article  Google Scholar 

  38. Eanes ED, Powers L, Costa JL. Extended x-ray absorption fine structure (EXAFS) studies on calcium in crystalline and amorphous solids of biological interest. Cell Calcium 1981;2:251–262

    Article  Google Scholar 

  39. Buerger MJ. Elementary Crystallography. New York: John Wiley, 1963.

    Google Scholar 

  40. Rowles SL. The precipitation of whitlokite from aqueous solutions. Bull Chem P1968:1798–1802

    Google Scholar 

  41. Welch JH, Gutt W. High-temperature studies of the system calcium oxide-phosphous pentoxide. J Chem Soc 1961,4442–4444

    Google Scholar 

  42. Nurse RW, Welch JH, Gutt W. High-temperature equilibria in the system dicalcium silicate-tircalcium phosphate. J Chem Soc 1959;1077–1083

    Google Scholar 

  43. Kreidler ER, Hummel FA. Phase relationships in the system SrO-P2O3 and the inflluence of water vapor on the formation of Sr 4P2O9. Inorg Chem 1967,6:884–891

    Article  Google Scholar 

  44. Prener JS. The growth and crystallographic properties of calcium fluor-and chlorapatite crystals. J Electrochem Soc 1967;114:77–83

    Article  Google Scholar 

  45. Bauer M. Rontgenographische und dielektrische Untersuchungen an apatiten. Dissertatili, Fakultat fur Physik, Universitat Karlsruhe, 1991.

    Google Scholar 

  46. Moreno EC, Gregory TM, Brown WE. Solubility of CaHPO4-2H2O and formation of ion pairs in the system Ca(OH)2-H3PO4-H2O at 37.5 °C. J Res NBS (Phys and Chem) 1966;70A:545

    Article  Google Scholar 

  47. Gee A, Deitz VR. Determination of phosphate by differential spectrophotometry. Anal Chem 1953;25:1320–1324

    Article  Google Scholar 

  48. Brown WE. Crystal growth of bone mineral. Clinical Orthopaedics 1966;44:205

    Article  Google Scholar 

  49. Meyer JL, Fowler BO. Lattice defects in nonstoichiometric calcium hydroxyapatite. A chemical approach. Inorg Chem 1982;21:3029–3035

    Article  Google Scholar 

  50. Brown WE, Schroeder LW, Ferris JS. Interlayering of crystalline octacalcium phosphate and hydroxylapatite. J Phys Chem 1979;83:1385–1388

    Article  Google Scholar 

  51. Dickens B, Schroeder LW. Investigation of epitaxy relationships between Ca5(PO4)3OH and other calcium orthophosphates. J Res Res 1980;85(5):347–362

    Google Scholar 

  52. Brown WE, Chow LC. Surface equilibria of sparingly soluble crystals. Colloids and Surfaces 1983;7:67–80

    Article  Google Scholar 

  53. Brown WE, Mathew, M, Chow LC. “Roles of Octacalcium Phosphate in Surface Chemistry of Apatites.” I. Adsorption on and Surface Chemistry of Hydroxyapatite. D.N. Misra, ed. New York: Plenum Publishing Corp., 1984.

    Google Scholar 

  54. Brown WE, Chow LC. Chemical properties of bone mineral. Ann Rev Mat Sci 1976;6:213–236

    Article  Google Scholar 

  55. Chow, LC. Development of self-setting calcium phosphate cements. J Ceram Soc Japan (The Centennial Memorial Issue) 1991;99(10):954–964

    Google Scholar 

  56. Gregory TM, Moreno EC, Brown WE. Solubility of CaHPO4.2H2O in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37.5 °C. J Res NBS (Phys and Chem) 1970;74A:461–475

    Article  Google Scholar 

  57. McDowell H, Brown WE, Suiter J.R. Solubility study of calcium hydrogen phosphate: ion pair formation. Inorganic Chem 1971;10:1638–1643

    Article  Google Scholar 

  58. Tung MS, Eidelman N, Sieck B, Brown WE. Octacalcium phosphate solubility product from 4 to 37 °C. J Res NBS 1988;93(5):613–624

    Google Scholar 

  59. Gregory TM, Moreno EC, Patel JM. Brown WE. Solubility of ß-Ca3(PO4)2 in the System Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C. J Res NBS 1974;78A(6):667–674

    Article  Google Scholar 

  60. Moreno EC, Gregory TM, Brown WE. Preparation and solubility of hydroxyapatite. J Res NBS (Phys and Chem) 1968 72A:773–782

    Article  Google Scholar 

  61. Avnimelech Y, Moreno EC, Brown WE. Solubility and surface properties of finely divided HA. J Res NBS 1973;77A:149–155

    Article  Google Scholar 

  62. McDowell H, Gregory TM, Brown WE. Solubility Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25 and 37 °C. Res Nati Bur Stand 1977;81 A:273–281

    Article  Google Scholar 

  63. Verbeek RMH, Steyaer H, Thun HP, Verbeek F. Solubility of synthetic calcium hydroxyapatites. J C S Faraday 1980;76:209–219

    Article  Google Scholar 

  64. Brown WE. “Solubilities of Phosphates and Other Sparingly Soluble Compounds.” I. Environmental Phosphorus Handbook. New York: John Wiley & Sons, 1973.

    Google Scholar 

  65. Dickens B, Brown WE. The crystal structure of Ca7Mg9(Ca,Mg)2(PO4)12. TMPM 1971;16:79–104

    Google Scholar 

  66. Tung MS, O’Farrell TJ. The effect of ethanol on the solubility of dicalcium phosphate dihydrate in the system Ca(OH)2-HPO4-H2O at 37 °C. J Mol Liquids 1993,56:237–243

    Article  Google Scholar 

  67. Tung MS, Lin C, Chow TH, Sung P. “The Effect of Ethanol on the Solubility of Hydroxyapatite in the System Ca(OH)2-H3PO4-H2O at 25 and 33 °C.” I. Hydroxyapatite and Related Compounds. P.W. Brown and B. Constante, eds. Boca Raton: CRC Press, 1994.

    Google Scholar 

  68. Fowler BO, Kuroda S. Changes in heated and in laser-irradiated human teeth enamel and their probable effects on solubility. Calcif Tissue Int 1986,38-197-208

    Google Scholar 

  69. Nancollas GH, Tomazic BB. Growth of calcium phosphate on hydroxyapatite crystals, effect of supersaturation and ionic medium. J Phys Chem 1974;78:2218–2225

    Article  Google Scholar 

  70. Eanes ED, Meyer JL. The Maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calif Tiss Res 1977; 23:259–269

    Article  Google Scholar 

  71. Markovic M, Fowler BO, Tung MS, Lagergren ES. “Composition and Solubility Product of a Synthetic Calcium Hydroxyapatite.” I. Mineral Scale Formation and Inhibition. Z. Amjad, ed., 1994. New York: Plenum Press, 1995.

    Google Scholar 

  72. Tung MS, Chow LC, Brown WE. Hydrolysis of dicalcium phosphate dihydrate in the presence or absence of calcium fluoride. J Dent Res 1985;64(1):2–5

    Article  Google Scholar 

  73. Tung MS, Tomazic B, Brown W E. The effects of magnesium and fluoride on the hydrolysis of octacalcium phosphate. Arch Oral Biol 1992;37(7):585–591

    Article  Google Scholar 

  74. Tung MS, Brown WE. An intermediate state in hydrolysis of amorphous calcium phosphate. Calcif Tissue Int 1983,35:783–790

    Article  Google Scholar 

  75. Tung MS. Gelation of 1. J Dent Res 1996;75: Abstract 11

    Google Scholar 

  76. Moreno EC, Kresak M, Zahradnik RT. Fluoridated hydroxyapatite solubility and caries formation. Nature 1974,247:64–65

    Article  Google Scholar 

  77. Bates RG. Determination of pH. Chapter 8, New York: Wiley, 1973.

    Google Scholar 

  78. LeGeros RZ. Variability of-TCP/HAP ratios in sintered ‘apatites’. J Dent Res 1986;65:292,abstr 110

    Google Scholar 

  79. Brown WE, Tung MS, Chow LC. Role of octacalcium phosphate in the incorporation of impurities into apatites. Proceedings, 2nd International Congress on Phosphorus Compounds, 1981; 59–71

    Google Scholar 

  80. Tung MS, Brown WE. The role of octacalcium phosphate in subcutaneous heterotopic calcification. Calcif Tissue Int 1985,37:329–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tung, M.S. (1998). Calcium Phosphates: Structure, Composition, Solubility, and Stability. In: Amjad, Z. (eds) Calcium Phosphates in Biological and Industrial Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5517-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5517-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7521-0

  • Online ISBN: 978-1-4615-5517-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics