Skip to main content

Part of the book series: Endocrine Updates ((ENDO,volume 1))

  • 66 Accesses

Abstract

Angiotensin II (AngII) is a circulating and tissue peptide produced by the enzymatic cascade of the renin angiotensin system, which is in charge of regulating blood presure and hydromineral homeostasis. This octapeptide is generated by cleavage of the aminoterminus of the substrate angiotensinogen, a 60 kDa liver protein belonging to the serine protease inhibitor family, by the aspartyl protease renin, produced by the kidney juxtaglomerular apparatus. This enzymatic reaction is the limiting step of the system and produces angiotensin I, an inactive decapeptide which is further processed to Angll by the endothelial angiotensin I converting enzyme. AngII exerts its physiological actions on several tissues, but the main target tissues are the vascular smooth muscle cells in which AngII produces vasoconstriction and glomerular cells of the adrenal cortex, the aldosterone production of which is stimulated by AngII. These actions are mediated by membrane-bound receptors, which were believed to belong to a single class. The development of new pharmacological tools and the cloning techniques have clearly identified 2 classes of receptors, called AT1 and AT2. In this chapter, will be summarized the present knowledge of the structures, the functions, the signaling pathways and physiological involvements of these 2 classes of receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiu AT, Herblin WF, McDall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Timmermans PBMWM. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 1989; 165: 196–203.

    Article  PubMed  CAS  Google Scholar 

  2. Whitebread S, Mele M, Kamber B, De Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 1989; 163: 284–291.

    Article  PubMed  CAS  Google Scholar 

  3. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991; 351: 233–236.

    Article  PubMed  CAS  Google Scholar 

  4. Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 1992; 267: 9455–9458.

    PubMed  CAS  Google Scholar 

  5. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 1993; 268: 24543–24546.

    PubMed  CAS  Google Scholar 

  6. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 1993; 268: 24539–24542.

    PubMed  CAS  Google Scholar 

  7. Tsuzuki S, Ichiki T, Nakakubo H, Kitami Y, Guo DF, Shirai H, Inagami T. Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor. Biochem Biophys Res Commun 1994; 200: 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  8. Takeuchi K, Alexander RW, Nakamura Y, Tsujino T, Murphy TJ. Molecular structure and transcriptional function of the rat vascular ATIA angiotensin receptor gene. Circ Res 1993; 73: 612–621.

    Article  PubMed  CAS  Google Scholar 

  9. Curnow KM, Pascoe L, Davies E, White PC, Corvol P, Clauser E. Alternative splicing of the human type 1-angiotensin II receptor (AT1) gene leads to a novel receptor isoform and regulates the transcriptional efficiency of the mRNA. Mol Endocrinol 1995; 9: 1250–1262.

    Article  PubMed  CAS  Google Scholar 

  10. Martin MM, Elton TS. The sequence and genomic organization of the human type 2 angiotensin II receptor. Biochem Biophys Res Commun 1995; 209: 554–562.

    Article  PubMed  CAS  Google Scholar 

  11. Bihoreau C, Monnot C, Davies E, Teutsch B, Bernstein KE, Corvol P, Clauser E. Mutation of Asp74 of the rat angiotensin II receptor confers changes in antagonist affinities and abolishes G-protein coupling. ProcNatl AcadSci USA 1993; 90: 5133–5137.

    Article  CAS  Google Scholar 

  12. Monnot C, Bihoreau C, Conchon S, Corvol P, Clauser E. Polar Residues in the transmembrane domains of the AT1A angiotensin receptor are required for binding and coupling. J Biol Chem 1996; 271: 1507–1513.

    Article  PubMed  CAS  Google Scholar 

  13. Hjorth SA, Schambye HT, Greenlee WJ, Schwartz TW. Identification of peptide binding residues in the extracellular domains of the AT1 receptor. J Biol Chem 1994; 269: 30953–30959.

    PubMed  CAS  Google Scholar 

  14. Ji H, Leung M, Zhang Y, Catt KJ, Sandberg K. Differential structural requirements for specific binding of nonpeptide and peptide antagonists to the ATI angiotensin receptor. J Biol Chem 1994; 269: 16533–16536.

    PubMed  CAS  Google Scholar 

  15. Ji H, Zheng W, Zhang Y, Catt KJ, Sandberg K. Genetic transfer of a nonpeptide antagonist binding site to a previuosly unresponsive angiotensin receptor. Proc Natl Acad Sci USA 1995; 92: 9240–9244.

    Article  PubMed  CAS  Google Scholar 

  16. Schambye HT, Hjorth SA, Bergsma DJ, Sathe G, Schwartz TW. Differentiation between binding sites for angiotensin II and nonpeptide antagonists on the angiotensin II type 1 receptors. Proc Natl Acad Sci USA 1994; 91: 7046–7050.

    Article  PubMed  CAS  Google Scholar 

  17. Perlman S, Schambye HT, Rivero RA, Greenlee WJ, Hjorth SA, Schwartz TW. Non-peptide angiotensin agonist. Functional and molecular interaction with the ATI receptor. J Biol Chem 1995; 270: 1493–1496.

    Article  PubMed  CAS  Google Scholar 

  18. Chiu AT, Dunscomb J, Kosierowski J, Burton CRA, Santomenna LD, Corjay MH, Benfield P. The ligand binding signatures of the rat AT1A, AT1B and the human AT1 receptors are essentially identical. Biochem Biophys Res Commun 1993; 197: 440–449.

    Article  PubMed  CAS  Google Scholar 

  19. Balmforth AJ, Bryson SE, Aylett AJ, Warburton P, Ball SG, Pun KT, Middlemiss D, Drew GM. Comparative pharmacology of recombinant rat AT1A, AT1B and human AT1 receptors expressed by transfected COS-M6 cells. Br J Pharmacol 1994; 112: 277–281.

    Article  PubMed  CAS  Google Scholar 

  20. Servant G, Laporte SA, Leduc R, Escher E, Guillemette G. Identification of Angiotensin II binding domains in the rat AT2 receptor with photolabile angiotensin analogs. J Biol Chem 1997; 272: 8653–8659.

    Article  PubMed  CAS  Google Scholar 

  21. Heerding JN, Yee DK, Jacobs SL, Fluharty SJ. Mutational analysis of the angiotesin II type 2 receptor: contribution of conserved extracellular aminoacids. Regul Pept 1997; 72: 97–103.

    Article  PubMed  CAS  Google Scholar 

  22. Ohyama K, Yamano Y, Chaki S, Kondo T, Inagami T. Domains for G-protein coupling in angiotensin II receptor type I: studies by site-directed mutagenesis. Biochem Biophys Res Comm 1992; 189: 677–683.

    Article  PubMed  CAS  Google Scholar 

  23. Shirai H, Takahashi K, Katada T, Inagami T. Mapping of G-protein coupling sites of the angiotensin II type 1 receptor. Hypertension 1995; 25: 726–730.

    Article  PubMed  CAS  Google Scholar 

  24. Wang C, Jayadev S, Escobedo JA. Identification of a domain of the angiotensin II type 1 receptor determining Gq coupling by the use of receptor chimeras. J Biol Chem 1995; 270: 16677–16682.

    Article  PubMed  CAS  Google Scholar 

  25. Conchon S, Barrault MB, Miserey S, Corvol P, Clauser E. The C-terminal third intracellular loop of the rat AT1A angiotensin II receptor plays a key role in G-protein coupling specificity and transduction of the mitogenic signal. J Biol Chem 1997; 272: 25566–25572.

    Article  PubMed  CAS  Google Scholar 

  26. Hunyady L, Zhang M, Jagadeesh G, Bor M, Balla T, Catt KJ. Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the ATI angiotensin receptor. Proc Natl Acad Sci USA 1996; 93: 10040–10045.

    Article  PubMed  CAS  Google Scholar 

  27. Franzoni L, Nicastro G, Pertinhez TA, Tato M, Nakaie CR, Paiva ACM, Schreier S, Spisni A. Structure of the C-terminal fragment 300-320 of the rat angiotensin II ATIA receptor and its relevance with respect to G-protein coupling. J Biol Chem 1997; 272: 9734–9741.

    Article  PubMed  CAS  Google Scholar 

  28. Sano T, Ohyama K, Yamano Y, Nakagomi Y, Nakazawa S, Kikyo M, Shirai H, Blank JS, Exton JH, Inagami T. A domain for G-protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A. J Biol Chem 1997; 272: 23631–23636.

    Article  PubMed  CAS  Google Scholar 

  29. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II ATI receptor. J Biol Chem 1997; 272

    Google Scholar 

  30. Hayashida W, Horiuchi M, Dzau VJ. Intracellular third loop domain of Angiotensinll type 2 receptor. J Biol Chem 1996; 271: 21985–21992.

    Article  PubMed  CAS  Google Scholar 

  31. Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965; 12: 88–118.

    Article  PubMed  CAS  Google Scholar 

  32. Marie J, Maigret B, Joseph MP, Larguier R, Nouet S, Lombard C, Bonnafous JC. Tyr292 in the seventh transmembrane domain of the AT1A angiotensin II receptor is essential for its coupling to phospholipase C J Biol Chem 1994; 269: 20815–20818.

    PubMed  CAS  Google Scholar 

  33. Hunyady L, Bor M, Balla T, Catt KJ. Critical role of a conserved intramembrane tyrosine residue in angiotensin II receptor activation. J Biol Chem 1995; 270: 9702–9705.

    Article  PubMed  CAS  Google Scholar 

  34. Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the αlb-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 1992; 267: 1430–1433.

    PubMed  CAS  Google Scholar 

  35. Ren Q, Kurose H, Lefkowitz RJ, Cotecchia S. Constitutively active mutants of the α2-adrenergic receptor. J Biol Chem 1993; 268: 1430–1433.

    Google Scholar 

  36. Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. Proc Natl Acad Sci USA 1993; 268: 4625–4636.

    CAS  Google Scholar 

  37. Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen type metaphyseal chondrodysplasia Science 1995; 98–100.

    Google Scholar 

  38. Parma J, Duprez L, van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649–651.

    Article  PubMed  CAS  Google Scholar 

  39. Groblewski T, Maigret B, Larguier R, Lombard C, Bonnafous JC, Marie J. Mutation of Asnlll in the third transmembrane domain of the ATIA angiotensin II receptor induces its constitutive activation. J Biol Chem 1997; 272: 1822–1826.

    Article  PubMed  CAS  Google Scholar 

  40. Balmforth AJ, Lee AJ, Warburton P, Donnelly D, Ball SG. The conformational change responsible for AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII. J Biol Chem 1997; 272: 4245–4251.

    Article  PubMed  CAS  Google Scholar 

  41. Davies E, Bonnardeaux A, Plouin PF, Corvol P, Clauser E. The role of angiotensin II (type 1) receptor in primary hyperaldosteronism. J Clin Endocrinol Metab 1997; 82: 611–615.

    Article  PubMed  CAS  Google Scholar 

  42. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M. A peptide derived from (β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 1996; 271: 16384–16392.

    Article  PubMed  CAS  Google Scholar 

  43. Romano C, Yang WL, O’malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 1996; 271: 28612–28616.

    Article  PubMed  CAS  Google Scholar 

  44. Cvejic S, Devi LA. Dimerization of the δ opioid receptor. J Biol Chem 1997; 272: 26959–26964.

    Article  PubMed  CAS  Google Scholar 

  45. Gouldson PR, Reynolds CA. Simulations on dimeric peptides: evidence for domain swapping in G-protein coupled receptors? Biochem Soc Trans 1997; 25: 1066–1071.

    PubMed  CAS  Google Scholar 

  46. Conchon S, Monnot C, Teutsch B, Corvol P, Clauser E. Internalization of the rat AT1A and AT1B receptors: pharmacological and functional requirements. FEBS Lett 1994; 349: 365–370.

    Article  PubMed  CAS  Google Scholar 

  47. Hunyady L, Baukal AJ, Balla T, Cart KJ. Independence of type 1 angiotensin II receptor endocytosis from G-protein coupling and signal transduction. J Biol Chem 1994; 269: 24798–24804.

    PubMed  CAS  Google Scholar 

  48. Hunyady L, Bor M, Baukal AJ, Balla T, Catt KJ. A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J Biol Chem 1995; 270: 16602–16609.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas WG, Thekkumkara TJ, Motel TJ, Baker KM. Stable expression of a truncated ATIA receptor in CHO.K1 cells. J Biol Chem 1995; 270: 207–213.

    Article  PubMed  CAS  Google Scholar 

  50. Hunyady L, Bor M, Balla T, Catt KJ. Identification of a cytoplasmic Ser-Thr-Leu motif that determines agonist-induced internalization of the ATI angiotensin receptor. J Biol Chem 1994; 269: 31378–31382.

    PubMed  CAS  Google Scholar 

  51. Conchon S, Peltier N, Corvol P, Clauser E. A non-internalized, non-desensitized truncated ATIA receptor transduces an amplified angiotensin II signal. Am J Physiol 1998; 274: E336–E345.

    PubMed  CAS  Google Scholar 

  52. Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ. Phosphorylation of the type 1A angiotensin II receptor by G-protein-coupled receptor kinases and protein kinase C. J Biol Chem 1996; 271: 13266–13272.

    Article  PubMed  CAS  Google Scholar 

  53. Balmforth AJ, Lee AJ, Shepherd FH, Warburton P, Donnelly D, Ball SG. G-protein-coupled receptors for peptide hormones: angiotensin II receptors. Biochem Soc Trans 1997; 25: 1041–1046.

    PubMed  CAS  Google Scholar 

  54. Clauser E, Curnow KM, Conchon S, Davies E, Teutsch B, Vianello B, Monnot C, Corvol P. Molecular structure and mechanisms of action of mammalian angiotensin II receptors. Cur Op Endocrinol Diab 1995; 2: 404–411.

    Article  CAS  Google Scholar 

  55. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp U. Protein Kinase Ca activates RAF-1 by direct phosphorylation. Nature 1993; 364: 249–252.

    Article  PubMed  CAS  Google Scholar 

  56. Crespo P. Ras-dependent activation of MAP kinase pathway mediated by G-protein. Nature 1994; 369: 418–420.

    Article  PubMed  CAS  Google Scholar 

  57. Marrero MB, Schieffer B, Paxton WG, Schieffer E, Bernstein KE. Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase Cγl in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 15734–15738.

    Article  PubMed  CAS  Google Scholar 

  58. Schmitz U, Ishida M, Berck B. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells. Cire Res 1997; 81: 550–557.

    Article  CAS  Google Scholar 

  59. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II ATI receptor. Nature 1995; 375: 247–250.

    Article  PubMed  CAS  Google Scholar 

  60. Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN. Role of JAK/STAT and MAP kinases cascades in angiotensin II and PDGF induced vascular smooth muscle cell proliferation. J Biol Chem 1997; 272: 24684–24690.

    Article  PubMed  CAS  Google Scholar 

  61. Sadoshima J, Izumo S. Molecular characterization of angiotensin H-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Circ Res 1993; 73: [pp413-423.

    Google Scholar 

  62. Giasson E, Meloche S. Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 1995; 270: 5225–5231.

    Article  PubMed  CAS  Google Scholar 

  63. Fleuren M, Gingras AC, Sonenberg N, Meloche S. Angiotensin II stimulates phosphorylation of the translational repressor 4eBPl by a MAP kinase-independent mechanism. J Biol Chem 1997; 272: 4006–4012.

    Article  Google Scholar 

  64. Leduc I, Meloche S. Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J Biol Chem 1995; 270: 4401–4404.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang J, Pratt R. The AT2 receptor selectively associates Giα2 and Gi΁3 in the rat fetus. J Biol Chem 1996; 271: 15026–15033.

    Article  PubMed  CAS  Google Scholar 

  66. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M. The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 1992; 183: 206–211.

    Article  PubMed  CAS  Google Scholar 

  67. Bedecs K, Elbaz N, Sutren M, Masson M, Susini C, Strosberg A, Nahmias C. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J 1997; 325: 449–454.

    PubMed  CAS  Google Scholar 

  68. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau V. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating Mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J Biol Chem 1997; 272: 19022–19026.

    Article  PubMed  CAS  Google Scholar 

  69. Nakajima M, Hutchinson H, Fujinaga M, Hayashida W, Morishita R, Zhang L, Horiuchi M, Pratt R, Dzau V. The angiotensin type 2 (AT2) receptor antagonizes the growth effects of the ATI receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 1995; 92: 10663–10667.

    Article  PubMed  CAS  Google Scholar 

  70. Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 1996; 93: 156–160.

    Article  PubMed  CAS  Google Scholar 

  71. Lopez F, Esteve JP, Buscail L, Delesque N, Saint-Laurent N, Theveniau M, Nahmias C, Vaysse N, Susini C. The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem 1997; 272: 24448–24454.

    Article  PubMed  CAS  Google Scholar 

  72. Huang X, Richards E, Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin type 2 receptors. J Biol Chem 1996; 271: 15635–15641.

    Article  PubMed  CAS  Google Scholar 

  73. Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, Coffman TM. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 1995; 92: 3521–3525.

    Article  PubMed  CAS  Google Scholar 

  74. Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Uchida H, Sugiura M, Fukuta K, A; F, Murakami K. Angiotensin II type la receptor deficient mice with hypotension and hyperreninemia J Biol Chem 1995; 270: 18719–18722.

    Article  PubMed  CAS  Google Scholar 

  75. Chen X, Li W, Yoshida H, Tsuchida S, Nishimura H, Takemoto F, Okubo S, Fogo A, Matsusaka T, Ichikawa I. Targeting deletion of angiotensin type IB receptor gen in mouse. Am J Physiol 1997; 272: F299–F304.

    PubMed  CAS  Google Scholar 

  76. . Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I. Murine double nullizygotes of the angiotensin type 1A and IB receptor genes duplicate severe abnormal phenotype of angiotensinogen nullizygote. J Clin Invest 1998; 101: 755–760.

    Article  PubMed  CAS  Google Scholar 

  77. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ. Overexpression of angiotensin ATI receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci USA 1997; 94: 6391–6396.

    Article  PubMed  CAS  Google Scholar 

  78. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 651–657.

    Article  PubMed  CAS  Google Scholar 

  79. Lo M, Liu KL, Lantelme P, Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest 1995; 95: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  80. Kang J, Richards EM, Posner P, Sumners C. Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment Am J Physiol 1995; 268: C278–C282.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miserey, S. et al. (1998). AT1 versus AT2 receptor. In: Levin, E.R., Nadler, J.L. (eds) Endocrinology of Cardiovascular Function. Endocrine Updates, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5569-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5569-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7547-0

  • Online ISBN: 978-1-4615-5569-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics