Skip to main content

Modulation by Oxidants and Antioxidants of Signal Transduction and Smooth Muscle Cell Proliferation

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

Arteriosclerosis, restenosis, and hypertension as well as a number of other vascular diseases are characterized by vascular smooth muscle cell proliferation.1-4 Smooth muscle cell growth is regulated by specific factors released from blood cells,1-5 by the vessel wall cells3,6 and by natural compounds, such as tocopherols. Active oxygen species (i.e., O2, H2O2, and OH) may act as vascular smooth muscle growth factors by inducing proto-oncogene expression and DNA synthesis,7,8 and antioxidants can retard atherosclerosis and foam cell formation as shown in animal model,9,10 and human studies.11-14 Tocopherols, well-established natural antioxidants, may in some cases stimulate cell proliferation by preventing the formation of growth-inhibitory lipid peroxides.15-19 In addition to having antioxidant properties, RRR-α-tocopherol is a cell growth inhibitor, this effect being unrelated with its radical scavenger properties.20,21 Parallel to the inhibition of cell proliferation, RRR-α-tocopherol has been shown to inhibit protein kinase C activity in smooth muscle cells.20,21 The mechanism of this inhibition appears to be related with a diminished phosphorylation of protein kinase C-α.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raines, E. W., and R. Ross. 1993. Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br. Heart. J. 69: S30–S37.

    PubMed  CAS  Google Scholar 

  2. Badimon, J. J., V. Fuster, J. H. Chesebro, and L. Badimon. 1993. Coronary atherosclerosis: a multifactorial disease. Circulation 87: 113–116.

    Google Scholar 

  3. Fuster, V., L. Badimon, J. J. Badimon, and J. H. Chesebro. 1992. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N. Engl. J. Med. 326: 310–318.

    PubMed  CAS  Google Scholar 

  4. Fuster, V., L. Badimon, J. J. Badimon, and J. H. Chesebro. 1992. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N. Engl. J. Med. 326: 242–250.

    PubMed  CAS  Google Scholar 

  5. Schwartz, S. M., R. L. Heimark, and M. W. Majesky. 1990. Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70: 1177–1209.

    PubMed  CAS  Google Scholar 

  6. Ross, R., and L. Agius. 1992. The process of atherogenesis—cellular and molecular interaction: from experimental animal models to humans. Diabetologia 35: S34–S40.

    PubMed  Google Scholar 

  7. Rao, G. N., and B. C. Berk. 1992. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ. Res. 70: 593–599.

    PubMed  CAS  Google Scholar 

  8. Rao, G. N., B. Lassegue, K. K. Griendling, R. W. Alexander, and B. C. Berk. 1993. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res. 21: 1259–1263.

    PubMed  CAS  Google Scholar 

  9. Kita, T., Y. Nagano, M. Yokode, K. Ishii, N. Kume, A. Ooshima, H. Yoshida, and C. Kawai. 1987. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 84: 5928–5931.

    PubMed  CAS  Google Scholar 

  10. Bjorkhem, I., A. Henriksson Freyschuss, O. Breuer, U. Diczfalusy, L. Berglund, and P. Henriksson. 1991. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. 11: 15–22.

    PubMed  CAS  Google Scholar 

  11. Jialal, I., and C. J. Fuller. 1993. Oxidized LDL and antioxidants. Clin. Cardiol. 16: I6–I9.

    PubMed  CAS  Google Scholar 

  12. Gey, K. F. 1990. The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem. Soc. Trans. 18: 1041–1045.

    PubMed  CAS  Google Scholar 

  13. Rimm, E. B., M. J. Stampfer, A. Ascherio, E. Giovannucci, G. A. Colditz, and W. C. Willett. 1993. Vitamin E consumption and the risk of coronary heart disease in men (see comments). N. Engl. J. Med. 328: 1450–1456.

    PubMed  CAS  Google Scholar 

  14. Stampfer, M. J., C. H. Hennekens, J. E. Manson, G. A. Colditz, B. Rosner, and W. C. Willett. 1993. Vitamin E consumption and the risk of coronary disease in women (see comments). N. Engl. J. Med. 328: 1444–1449.

    PubMed  CAS  Google Scholar 

  15. Morisaki, N., K. Yokote, and Y. Saito. 1992. Atherosclerosis from a viewpoint of arterial wall cell function: relation to vitamin E. J. Nutr. Sci. Vitaminol. Spec. No: 196–199.

    Google Scholar 

  16. Lindsey, J. A., H. F. Zhang, H. Kaseki, N. Morisaki, T. Sato, and D. G. Cornwell. 1985. Fatty acid metabolism and cell proliferation. VII. Antioxidant effects of tocopherols and their quinones. Lipids 20: 151–157.

    PubMed  CAS  Google Scholar 

  17. Gavino, V. C., J. S. Miller, S. O. Ikharebha, G. E. Milo, and D. G. Cornwell. 1981. Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J. Lipid Res. 22: 763–769.

    PubMed  CAS  Google Scholar 

  18. Kuzuya, M., M. Naito, C. Funaki, T. Hayashi, K. Yamada, K. Asai, and F. Kuzuya. 1991. Antioxidants stimulate endothelial cell proliferation in culture. Artery 18: 115–124.

    PubMed  CAS  Google Scholar 

  19. Morisaki, N., J. M. Stitts, L. Bartels Tomei, G. E. Milo, R. V. Panganamala, and D. G. Cornwell. 1982. Dipyridamole: an antioxidant that promotes the proliferation of aorta smooth muscle cells. Artery 11: 88–107.

    PubMed  CAS  Google Scholar 

  20. Chatelain, E., D. O. Boscoboinik, G. M. Bartoli, V. E. Kagan, F. K. Gey, L. Packer, and A. Azzi. 1993. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim. Biophys. Acta 1176: 83–89.

    PubMed  CAS  Google Scholar 

  21. Ozer, N. K., P. Palozza, D. Boscoboinik, and A. Azzi. 1993. d-alpha-Tocopherol inhibits low density lipoprotein induced proliferation and protein kinase C activity in vascular smooth muscle cells. FEBS Lett. 322: 307–310.

    PubMed  CAS  Google Scholar 

  22. Azzi, A., D. Boscoboinik, and C. Hensey. 1992. The protein kinase C family. Eur. J. Biochem. 208: 547–557.

    PubMed  CAS  Google Scholar 

  23. Chakraborti, S., and J. R. Michael. 1993. Role of protein kinase C in oxidant-mediated activation of phospholipase A2 in rabbit pulmonary arterial smooth muscle cells. Mol. Cell. Biochem. 122: 9–15.

    PubMed  CAS  Google Scholar 

  24. Chakraborti, S., S. K. Batabyal, G. Dutta, and J. R. Michael. 1992. Role of serine esterase in hydrogen peroxide-mediated activation of phospholipase A2 in rabbit pulmonary arterial smooth muscle cells. Ind. J. Biochem. Biophys. 29: 477–481.

    CAS  Google Scholar 

  25. Rao, G. N., B. Lassègue, K. K. Griendling, and R. W. Alexander. 1993. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene 8: 2759–2764.

    PubMed  CAS  Google Scholar 

  26. Gopalakrishna, R., and W. B. Anderson. 1991. Reversible oxidative activation and inactivation of protein kinase C by the mitogen/tumor promoter periodate. Arch. Biochem. Biophys. 285: 382–387.

    PubMed  CAS  Google Scholar 

  27. Palumbo, E. J., J. D. Sweatt, S. J. Chen, and E. Klann. 1992. Oxidation-induced persistent activation of protein kinase C in hippocampal homogenates. Biochem. Biophys. Res. Commun. 187: 1439–1445.

    PubMed  CAS  Google Scholar 

  28. Azzi, A., D. Boscoboinik, and N. K. Ozer. 1994. Vascular smooth muscle cells: regulation and deregulation by reactive oxygen species, pp. 423–445. In C. K. Sen, L. Packer, and O. Hänninen (eds.), Exercise and Oxygen Toxicity. Elsevier Science Publishers B. V., Amsterdam.

    Google Scholar 

  29. Abate, C., L. Patel, F. J. Rauscher, and T. Curran. 1990. Redox regulation of fos and jun DNA-binding activity in vitro. Science 249: 1157–1161.

    PubMed  CAS  Google Scholar 

  30. Toledano, M. B., and W. J. Leonard. 1991. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc. Natl Acad. Sci. USA 88: 4328–4332.

    PubMed  CAS  Google Scholar 

  31. Bannister, A. J., A. Cook, and T. Kouzarides. 1991. In vitro DNA binding activity of Fos/Jun and BZLF1 but not C/EBP is affected by redox changes. Oncogene 6: 1243–1250.

    PubMed  CAS  Google Scholar 

  32. Frame, M. C., N. M. Wilkie, A. J. Darling, A. Chudleigh, A. Pintzas, J. C. Lang, and D. A. Gillespie. 1991. Regulation of AP-l/DNA complex formation in vitro. Oncogene 6: 205–209.

    PubMed  CAS  Google Scholar 

  33. Derijard, B., M. Hibi, I. H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. J. Davis. 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    PubMed  CAS  Google Scholar 

  34. Engelberg, D., C. Klein, H. Martinetto, K. Struhl, and M. Karin. 1994. The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77: 381–390.

    PubMed  CAS  Google Scholar 

  35. Minden, A., A. Lin, T. Smeal, B. Dérijard, M. Cobb, R. Davis, and M. Karin. 1994. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol. Cell. Biol. 14: 6683–6688.

    PubMed  CAS  Google Scholar 

  36. Clark, J. D., L. L. Lin, R. W. Kriz, C. S. Ramesha, L. A. Sultzman, A. Y. Lin, N. Milona, and J. L. Knopf. 1991. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051.

    PubMed  CAS  Google Scholar 

  37. Burch, R. M, A. Luini, and J. Axelrod. 1986. Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to alpha 1-adrenergic stimulation in FRTL5 thyroid cells. Proc. Natl. Acad. Sci. USA 83: 7201–7205.

    PubMed  CAS  Google Scholar 

  38. Lin, L. L., M. Wartmann, A. Y. Lin, J. L. Knopf, A. Seth, and J. R. Davis. 1993. cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278.

    PubMed  CAS  Google Scholar 

  39. Glaser, K. B., A. Sung, J. Bauer, and B. M. Weichman. 1993. Regulation of eicosanoid biosynthesis in the macrophage. Involvement of protein tyrosine phosphorylation and modulation by selective protein tyrosine kinase inhibitors. Biochem. Pharmacol. 45: 711–721.

    PubMed  CAS  Google Scholar 

  40. Gupta, S. K., E. Diez, L. E. Heasley, S. Osawa, and G. L. Johnson. 1990. A G protein mutant that inhibits thrombin and purinergic receptor activation of phospholipase A2. Science 249: 662–666.

    PubMed  CAS  Google Scholar 

  41. Rao, G. N., M. S. Runge, and R. W. Alexander. Hydrogen peroxide activation of cytosolic phospholipase A2 in vascular smooth muscle cells. Biochim. Biophys. Acta 1265: 67–72.

    Google Scholar 

  42. Mahoney, C. W., and K. P. Huang. 1994. Molecular and catalytic properties of protein kinase C., pp. 16–63. In J. Kuo (ed.), Protein Kinase C. Oxford University Press, New York.

    Google Scholar 

  43. Gopalakrishna, R., and W. B. Anderson. 1989. Ca2+-and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc. Natl. Acad. Sci. USA 86: 6758–6762.

    PubMed  CAS  Google Scholar 

  44. Kass, G. E., S. K. Duddy, and S. Orrenius. 1989. Activation of hepatocyte protein kinase C by redox-cycling quinones. Biochem. J. 260: 499–507.

    PubMed  CAS  Google Scholar 

  45. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1993. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J. Biol. Chem. 268: 27180–27185.

    PubMed  CAS  Google Scholar 

  46. Siflinger Birnboim, A., M. S. Goligorsky, P. J. Del Vecchio, and A. B. Malik. 1992. Activation of protein kinase C pathway contributes to hydrogen peroxideinduced increase in endothelial permeability (see comments). Lab. Invest. 67: 24–30.

    PubMed  CAS  Google Scholar 

  47. Whisler, R. L., M. A. Goyette, I. S. Grants, and Y. G. Newhouse. 1995. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch. Biochem. Biophys. 319: 23–35.

    PubMed  CAS  Google Scholar 

  48. Cantoni, O., D. Boscoboinik, M. Fiorani, B. Stäuble, and A. Azzi. 1996. The phosphorylation state of MAP-kinases modulates the cytotoxic response of smooth muscle cells to hydrogen peroxide. FEBS Lett. 389: 285–288.

    PubMed  CAS  Google Scholar 

  49. Fiorani, M., O. Cantoni, A. Tasinato, D. Boscoboinik, and A. Azzi. 1995. Hydrogen peroxide-and fetal bovine serum-induced dna synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms. Biochim. Biophys. Acta 1269: 98–104.

    PubMed  Google Scholar 

  50. Stauble, B., D. Boscoboinik, A. Tasinato, and M. Azzi. 1994. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-α-tocopherol in vascular smooth muscle cells. Eur. J. Biochem. 226: 393–402.

    PubMed  CAS  Google Scholar 

  51. Sasaguri, T., C. Kosaka, M. Hirata, J. Masuda, K. Shimokado, M. Fujishima, and J. Ogata. 1993. Protein kinase C-mediated inhibition of vascular smooth muscle cell proliferation: the isoforms that may mediate Gl/S inhibition. Exp. Cell. Res. 208: 311–320.

    PubMed  CAS  Google Scholar 

  52. Sasaguri, T., C. Kosaka, K. Zen, J. Masuda, K. Shimokado, and J. Ogata. 1995. Protein kinase C isoforms that may mediate Gl/S inhibition in cultured vascular smooth muscle cells. Ann. N.Y. Acad. Sci. 748: 590–591.

    PubMed  CAS  Google Scholar 

  53. Berra, E., M. T. Diaz Meco, J. Dominguez, M. M. Municio, L. Sanz, J. Lozano, R. S. Chapkin, and J. Moscat. 1993. Protein kinase C zeta isoform is critical for mitogenic signal transduction. Cell 74: 555–563.

    PubMed  CAS  Google Scholar 

  54. Nakanishi, H., K. A. Brewer, and J. H. Exton. 1993. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 268: 13–16.

    PubMed  CAS  Google Scholar 

  55. Pongracz, J., P. Clark, J. P. Neoptolemos, and J. M. Lord. 1995. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int. J. Cancer 61: 35–39.

    PubMed  CAS  Google Scholar 

  56. Cadena, D. L., and G. N. Gill. 1992. Receptor tyrosine kinases. FASEB J. 6: 2332–2337.

    PubMed  CAS  Google Scholar 

  57. Toyoshima, K., Y. Yamanashi, K. Inoue, K. Semba, T. Yamamoto, and T. Akiyama. 1992. Protein tyrosine kinases belonging to the src family. CIBA Found. Symp. 164: 240–248.

    PubMed  CAS  Google Scholar 

  58. Glenney, J. R., Jr. 1992. Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim. Biophys. Acta 1134: 113–127.

    PubMed  CAS  Google Scholar 

  59. Chen, Y. X., D. C. Yang, A. B. Brown, Y. Jeng, A. Tatoyan, and T. M. Chan. 1990. Activation of a membrane-associated phosphatidylinositol kinase through tyrosine-protein phosphorylation by naphthoquinones and orthovanadate. Arch. Biochem. Biophys. 283: 184–192.

    PubMed  CAS  Google Scholar 

  60. Fialkow, L., C. K. Chan, S. Grinstein, and G. P. Downey. 1993. Regulation of tyrosine phosphorylation in neutrophils by the NADPH oxidase. Role of reactive oxygen intermediates. J. Biol. Chem. 268: 17131–17137.

    PubMed  CAS  Google Scholar 

  61. Chan, T. M., E. Chen, A. Tatoyan, N. S. Shargill, M. Pleta, and P. Hochstein. 1986. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem. Biophys. Res. Commun. 139: 439–445.

    PubMed  CAS  Google Scholar 

  62. Chen, Y., and T. M. Chan. 1993. Orthovanadate and 2,3-dimethoxy-l,4-naphthoquinone augment growth factor-induced cell proliferation and c-fos gene expression in 3T3-L1 cells. Arch. Biochem. Biophys. 305: 9–16.

    PubMed  CAS  Google Scholar 

  63. Zor, U., E. Ferber, P. Gergely, K. Szucs, V. Dombradi, and R. Goldman. 1993. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem. J. 295: 879–888.

    PubMed  CAS  Google Scholar 

  64. Nakamura, K., T. Hori, N. Sato, K. Sugie, T. Kawakami, and J. Yodoi. 1993. Redox regulation of a src family protein tyrosine kinase p561ck in T cells. Oncogene 8: 3133–3139.

    PubMed  CAS  Google Scholar 

  65. Kanner, S. B., T. J. Kavanagh, A. Grossmann, S. L. Hu, J. B. Bolen, P. S. Rabinovitch, and J. A. Ledbetter. 1992. Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase C gamma 1. Proc. Natl. Acad. Sci. USA 89: 300–304.

    PubMed  CAS  Google Scholar 

  66. Toyoshima, H., H. Kozutsumi, Y. Maru, K. Hagiwara, A. Furuya, H. Mioh, N. Hanai, F. Takaku, Y. Yazaki and H. Hirai. 1993. Differently spliced cDNAs of human leukocyte tyrosine kinase receptor tyrosine kinase predict receptor proteins with and without a tyrosine kinase domain and a soluble receptor protein. Proc. Natl. Acad. Sci. USA 90: 5404–5408.

    PubMed  CAS  Google Scholar 

  67. Bauskin, A. R., I. Alkalay, and Y. Ben Neriah. 1991. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell 66: 685–696.

    PubMed  CAS  Google Scholar 

  68. Guy, G. R., J. Cairns, S. B. Ng, and Y. H. Tan. 1993. Inactivation of a redoxsensitive protein Phosphatase during the early events of tumor necrosis factor/ interleukin-1 signal transduction. J. Biol. Chem. 268: 2141–2148.

    PubMed  CAS  Google Scholar 

  69. Keyse, S. M., and E. A. Emslie. 1992. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine Phosphatase. Nature 359: 644–647.

    PubMed  CAS  Google Scholar 

  70. Alessi, D. R., C. Smythe, and S. M. Keyse. 1993. The human CL100 gene encodes a Tyr/Thr-protein Phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Oncogene 8: 2015–2020.

    PubMed  CAS  Google Scholar 

  71. Keyse, S. M. 1995. An emerging family of dual specificity MAP kinase phosphatases. Biochim. Biophys. Acta 1265: 152–160.

    PubMed  Google Scholar 

  72. Sullivan, S. G., D. T. Chiu, M. Errasfa, J. M. Wang, J. S. Qi, and A. Stern. 1994. Effects of H2O2 on protein tyrosine Phosphatase activity in HER14 cells. Free Rad. Biol. Med. 16: 399–403.

    PubMed  CAS  Google Scholar 

  73. Seger, R., and E. G. Krebs. 1995. The MAPK signaling cascade. FASEB J. 9: 726–735.

    PubMed  CAS  Google Scholar 

  74. Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement (news). Nature 365: 781–783.

    PubMed  CAS  Google Scholar 

  75. Blumer, K. J., and G. L. Johnson. 1994. Diversity in function and regulation of MAP kinase pathways. Trends Biochem. Sci. 19: 236–240.

    PubMed  CAS  Google Scholar 

  76. Cobb, M. H., and E. J. Goldsmith. 1995. How MAP kinases are regulated. J. Biol. Chem. 270: 14843–14846.

    PubMed  CAS  Google Scholar 

  77. Clarke, P. R. 1994. Signal transduction. Switching off MAP kinases. Curr. Biol. 4: 647–650.

    PubMed  CAS  Google Scholar 

  78. Duff, J. L., B. P. Monia, and B. C. Berk. 1995. Mitogen-activated protein (MAP) kinase is regulated by the MAP kinase Phosphatase (MKP-1) in vascular smooth muscle cells. Effect of antinomycin D and antisense oligonucleotides. J. Biol. Chem. 270: 7161–7166.

    PubMed  CAS  Google Scholar 

  79. Stevenson, M. A., S. S. Pollock, C. N. Coleman, and S. K. Calderwood. 1994. X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res. 54: 12–15.

    PubMed  CAS  Google Scholar 

  80. Reid, T. M., and L. A. Loeb. 1993. Tandem double CC → TT mutations are produced by reactive oxygen species. Proc. Natl. Acad. Sci. USA 90: 3904–3907.

    PubMed  CAS  Google Scholar 

  81. Hruza, L. L., and A. P. Pentland. 1993. Mechanisms of UV-induced inflammation. J. Invest. Dermatol. 100: 35S–41S.

    PubMed  CAS  Google Scholar 

  82. Trenam, C. W., D. R. Blake, and C. J. Morris. 1992. Skin inflammation: reactive oxygen species and the role of iron. J. Invest. Dermatol. 99: 675–682.

    PubMed  CAS  Google Scholar 

  83. Hibi, M., A. Lin, T. Smeal, A. Minden, and M. Karin. 1993. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7: 2135–2148.

    PubMed  CAS  Google Scholar 

  84. Baeuerle, P. A., and D. Baltimore. 1989. A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes Dev. 3: 1689–1698.

    PubMed  CAS  Google Scholar 

  85. Baeuerle, P. A., and D. Baltimore. 1988.1 kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242: 540–546.

    PubMed  CAS  Google Scholar 

  86. Baeuerle, P. A., and D. Baltimore. 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 53: 211–217.

    PubMed  CAS  Google Scholar 

  87. Baeuerle, P. A., M. Lenardo, J. W. Pierce, and D. Baltimore. 1988. Phorbol-esterinduced activation of the NF-kappa B transcription factor involves dissociation of an apparently cytoplasmic NF-kappa B/inhibitor complex. Cold Spring Harbor Symp. Quant. Biol. 53(2): 789–798.

    PubMed  CAS  Google Scholar 

  88. Henkel, T., T. Machleidt, I. Alkalay, M. Kronke, Y. Ben Neriah, and P. Baeuerle. 1993. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365: 182–185.

    PubMed  CAS  Google Scholar 

  89. Li, S., and J. M. Sedivy. 1993. Raf-1 protein kinase activates the NF-kappa B transcription factor by dissociating the cytoplasmic NF-kappa B-I kappa B complex. Proc. Natl. Acad. Sci. USA 90: 9247–9251.

    PubMed  CAS  Google Scholar 

  90. Schreck, R., P. Rieber, and P. A. Baeuerle. 1991. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  91. Schreck, R., K. Albermann, and P. A. Baeuerle. 1992. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Rad. Res. Commun. 17: 221–237.

    CAS  Google Scholar 

  92. Schreck, R., H. Zorbas, G. L. Winnacker, and P. A. Baeuerle. 1990. The NF-kappa B transcription factor induces DNA bending which is modulated by its 65-kD subunit. Nucleic Acids Res. 18: 6497–6502.

    PubMed  CAS  Google Scholar 

  93. Toledano, M. B., D. Ghosh, F. Trinh, and W. J. Leonard. 1993. N-terminal DNA-binding domains contribute to differential DNA-binding specificities of NF-kappa B p50 and p65. Mol. Cell. Biol. 13: 852–860.

    PubMed  CAS  Google Scholar 

  94. Lin, A., T. Smeal, B. Binetruy, T. Deng, J. C. Chambard, and M. Karin. 1993. Control of AP-1 activity by signal transduction cascades. Second Messenger Phosphoprotein Res. 28: 255–260.

    CAS  Google Scholar 

  95. Angel, P., and M. Karin. 1991. The role of Jun, Fos and the AP-1 complex in cellproliferation and transformation. Biochim. Biophys. Acta 1072: 129–157.

    PubMed  CAS  Google Scholar 

  96. Skroch, P., C. Buchman, and M. Karin. 1993. Regulation of human and yeast metallothionein gene transcription by heavy metal ions. Prog. Clin. Biol. Res. 380: 113–128.

    PubMed  CAS  Google Scholar 

  97. Chiu, R., M. Imagawa, R. J. Imbra, J. R. Bockoven, and M. Karin. 1987. Multiple-cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature 329: 648–651.

    PubMed  CAS  Google Scholar 

  98. Okuno, H., A. Akahori, H. Sato, S. Xanthoudakis, T. Curran, and H. Iba. 1993. Escape from redox regulation enhances the transforming activity of Fos. Oncogene 8: 695–701.

    PubMed  CAS  Google Scholar 

  99. Meyer, M., R. Schreck, and P. A. Baeuerle. 1993. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells. AP-1 as secondary antioxidant-responsive factor. EMBO J 12: 2005–2015.

    PubMed  CAS  Google Scholar 

  100. Rushmore, T. H., R. G. King, K. E. Paulson, and C. B. Pickett. 1990. Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc. Natl. Acad. Sci. USA 87: 3826–3830.

    PubMed  CAS  Google Scholar 

  101. Filling, R. S., A. Bensimon, Y. Tichauer, and V. Daniel. 1990. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA 87: 6258–6262.

    Google Scholar 

  102. Li, Y., and A. K. Jaiswal. 1992. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J. Biol. Chem. 267: 15097–15104.

    PubMed  CAS  Google Scholar 

  103. Pinkus, R., S. Bergelson, and V. Daniel. 1993. Phenobarbital induction of AP-1 binding activity mediates activation of glutathione S-transferase and quinone reductase gene expression. Biochem. J. 290: 637–640.

    PubMed  CAS  Google Scholar 

  104. Storz, G., and L. A. Tartaglia. 1992. OxyR: a regulator of antioxidant genes. J. Nutr. 122: 627–630.

    PubMed  CAS  Google Scholar 

  105. Wiese, A. G., R. E. Pacifici, and K. J. Davies. 1995. Transient adaptation of oxidative stress in mammalian cells. Arch. Biochem. Biophys. 318: 231–240.

    PubMed  CAS  Google Scholar 

  106. Keyse, S. M., and E. A. Emslie. 1992. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine Phosphatase. Nature 359: 644–647.

    PubMed  CAS  Google Scholar 

  107. Rao, G. N., B. Lassègue, K. K. Griendling, and R. W. Alexander. 1993. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidonic acid. Oncogene 8: 2759–2764.

    PubMed  CAS  Google Scholar 

  108. Nose, K., M. Shibanuma, K. Kikuchi, H. Kageyama, S. Sakiyama, and T. Kuroki. 1991. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 201: 99–106.

    PubMed  CAS  Google Scholar 

  109. Palomba, L., P. Sestili, F. Cattabeni, A. Azzi, and O. Cantoni. (1996). Prevention of necrosis and activation of apoptosis in oxidatively injured human myeloid leukemia U937 cells. FEBS Lett. 390: 91–94.

    PubMed  CAS  Google Scholar 

  110. Cantoni, O., F. Cattabeni, V. Stocchi, R. E. Meyn, P. Cerutti, and D. Murray. 1989. Hydrogen peroxide insult in cultured mammalian cells: relationships between DNA single-strand breakage, poly(ADP-ribose) metabolism and cell killing. Biochim. Biophys. Acta 1014: 1–7.

    PubMed  CAS  Google Scholar 

  111. Mello Filho, A. C., M. E. Hoffmann, and R. Meneghini. 1984. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J. 218: 273–275.

    PubMed  CAS  Google Scholar 

  112. Schraufstatter, I. U., P. A. Hyslop, D. B. Hinshaw, R. G. Spragg, L. A. Sklar, and C. G. Cochrane. 1986. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl Acad. Sci. USA 83: 4908–4912.

    PubMed  CAS  Google Scholar 

  113. Junod, A. F., L. Jornot, and H. Petersen. 1989. Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity, and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and flbroblasts. J. Cell. Physiol. 140: 177–185.

    PubMed  CAS  Google Scholar 

  114. Kirkland, J. B. 1991. Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-ribose)polymerase. Biochim. Biophys. Acta 1092: 319–325.

    PubMed  CAS  Google Scholar 

  115. Schraufstatter, I. U., D. B. Hinshaw, P. A. Hyslop, R. G. Spragg, and C. G. Cochrane. 1986. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77: 1312–1320.

    PubMed  CAS  Google Scholar 

  116. Hyslop, P. A., D. B. Hinshaw, I. U. Schraufstatter, L. A. Sklar, R. G. Spragg, and C. G. Cochrane. 1986. Intracellular calcium homeostasis during hydrogen peroxide injury to cultured P388D1 cells. J. Cell Physiol 129: 356–366.

    PubMed  CAS  Google Scholar 

  117. Lennon, S. V., J. J. Martin, and T. G. Cotter. 1991. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 24: 203–214.

    PubMed  CAS  Google Scholar 

  118. Lennon, S. V., S. A. Kilfeather, M. B. Hallett, A. K. Campbell, and T. G. Cotter. 1992. Elevations in cytosolic free Ca2+ are not required to trigger apoptosis in human leukaemia cells. Clin. Exp. Immunol. 87: 465–471.

    PubMed  CAS  Google Scholar 

  119. Ueda, N., and S. V. Shah. 1992. Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. J. Clin. Invest. 90: 2593–2597.

    PubMed  CAS  Google Scholar 

  120. Nosseri, C., S. Coppola, and L. Ghibelli. 1994. Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp. Cell Res. 212: 367–373.

    PubMed  CAS  Google Scholar 

  121. Weissberg, P. L. 1991. Mechanisms of vascular smooth muscle cell proliferation. Ann. Acad. Med. Singapore 20: 38–42.

    PubMed  CAS  Google Scholar 

  122. Schwartz, S. M., G. R. Campbell, and J. H. Campbell. 1986. Replication of smooth muscle cells in vascular disease. Circ. Res. 58: 427–444.

    PubMed  CAS  Google Scholar 

  123. Ross, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809.

    PubMed  CAS  Google Scholar 

  124. Schwartz, C. J., A. J. Valente, E. A. Sprague, J. L. Kelley, and R. M. Nerem. 1991. The pathogenesis of atherosclerosis: an overview. Clin. Cardiol. 14: 11–16.

    Google Scholar 

  125. Fridovich, I. 1978. The biology of oxygen radicals. Science 201: 875–880.

    PubMed  CAS  Google Scholar 

  126. Halliwell, B. 1989. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br. J. Exp. Pathol. 70: 737–757.

    PubMed  CAS  Google Scholar 

  127. Redl, H., H. Gasser, G. Schlag, and I. Marzi. 1993. Involvement of oxygen radicals in shock related cell injury. Br. Med. Bull. 49: 556–565.

    PubMed  CAS  Google Scholar 

  128. Ambrosio, G., J. L. Zweier, C. Duilio, P. Kuppusamy, G. Santoro, P. P. Elia, J. Tritto, P. Cirillo, M. Condorelli, and M. Chiariello. 1993. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J. Biol. Chem. 268: 18532–18541.

    PubMed  CAS  Google Scholar 

  129. Horton, J. W., and P. B. Walker. 1993. Oxygen, radicals, lipid peroxidation, and permeability changes after intestinal ischemia and reperfusion. J. Appl. Physiol. 74: 1515–1520.

    PubMed  CAS  Google Scholar 

  130. Granger, D. N., P. R. Kvietys, and M. A. Perry. 1993. Leukocyte—endothelial cell adhesion induced by ischemia and reperfusion. Can. J. Physiol. Pharmacol. 71: 67–75.

    PubMed  CAS  Google Scholar 

  131. Kontos, H. A., E. P. Wei, J. T. Povlishock, and C. W. Christman. 1984. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ. Res. 55: 295–303.

    PubMed  CAS  Google Scholar 

  132. Malviya, A. N., and P. Anglard. 1986. Modulation of cytosolic protein kinase C activity by ferricyanide: priming event seems transmembrane redox signalling. A study on transformed C3H/10T1/2 cells in culture. FEBS Lett. 200: 265–270.

    PubMed  CAS  Google Scholar 

  133. Xanthoudakis, S., and T. Curran. 1992. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 11: 653–665.

    PubMed  CAS  Google Scholar 

  134. Staal, F. J., M. Roederer, and L. A. Herzenberg. 1990. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc. Natl Acad. Sci. USA 87: 9943–9947.

    PubMed  CAS  Google Scholar 

  135. Dartsch, P. C., R. Voisard, and E. Betz. 1990. In vitro growth characteristics of human atherosclerotic plaque cells: comparison of cells from primary stenosing and restenosing lesions of peripheral and coronary arteries. Res. Exp. Med. 190: 77–87.

    CAS  Google Scholar 

  136. Dartsch, P. C., R. Voisard, G. Bauriedel, B. Hofling, and E. Betz. 1990. Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions. Arteriosclerosis 10: 62–75.

    PubMed  CAS  Google Scholar 

  137. van Poppel, G., A. Kardinaal, H. Princen, and F. J. Kok. 1994. Antioxidants and coronary heart disease. Ann. Med. 26: 429–434.

    PubMed  Google Scholar 

  138. Lafont, A. M., Y. C. Chai, J. F. Cornhill, P. L. Whitlow, P. H. Howe, and G. M. Chisolm. 1995. Effect of alpha-tocopherol on restenosis after angioplasty in a model of experimental atherosclerosis. J. Clin. Invest. 95: 1018–1025.

    PubMed  CAS  Google Scholar 

  139. Haramaki, N., L. Packer, H. Assadnazari, and G. Zimmer. 1993. Cardiac recovery during post-ischemic reperfusion is improved by combination of vitamin E with dihydrolipoic acid. Biochem. Biophys Res. Commun. 196: 1101–1107.

    PubMed  CAS  Google Scholar 

  140. Grainger, D. J., H. L. Kirschenlohr, J. C. Metcalfe, P. L. Weissberg, D. P. Wade, and R. M. Lawn. 1993. Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science 260: 1655–1658.

    PubMed  CAS  Google Scholar 

  141. Buhler, F. R., V. A. Tkachuk, A. W. Hahn, and T. J. Resink. 1991. Low-and highdensity lipoproteins as hormonal regulators of platelet, vascular endothelial and smooth muscle cell interactions: relevance to hypertension. J. Hypertens. Suppl 9: S28–S36.

    PubMed  CAS  Google Scholar 

  142. Ohlstein, E. H., S. A. Douglas, C. P. Sung, T. L. Yue, C. Louden, A. Arleth, G. Poste, R. R. Ruffolo, Jr., and G. Z. Feuerstein. 1993. Carvedilol, a cardiovascular drug, prevents vascular smooth muscle cell proliferation, migration, and neointimal formation following vascular injury. Proc. Natl. Acad. Sci. USA 90: 6189–6193.

    PubMed  CAS  Google Scholar 

  143. Tasinato, A., D. Boscoboinik, G. M. Bartoli, P. Maroni, and A. Azzi. 1995. d-α-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties. Proc. Natl. Acad. Sci. USA 92: 12190–12194.

    PubMed  CAS  Google Scholar 

  144. Pryor, A. W., J. A. Cornicelli, L. J. Devall, B. Tait, B. K. Trivedi, D. T. Witiak, and M. Wu. 1993. A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. J. Org. Chem. 58: 3521–3532.

    CAS  Google Scholar 

  145. Azzi, A., D. Boscoboinik, D. Marilley, N. K. Özer, B. Stäuble, and A. Tasinato. 1995. Vitamin E: A sensor and an information transducer of the cell oxidation state. Am. J. Clin. Nutr. 62: 1337S–1346S.

    PubMed  CAS  Google Scholar 

  146. Azzi, A., O. Cantoni, N. Ozer, D. Boscoboinik, and S. Spycher. 1996. The role of hydrogen peroxide and RRR-α-tocopherol in smooth muscle cell proliferation. Cell Death Differen. 3: 79–90.

    CAS  Google Scholar 

  147. Pears, C., S. Stabel, S. Cazaubon, and P. J. Parker. 1992. Studies on the phosphorylation of protein kinase C-alpha. Biochem. J. 283: 515–518.

    PubMed  CAS  Google Scholar 

  148. Newton, A. C. 1995. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270: 28495–28498.

    PubMed  CAS  Google Scholar 

  149. Clarke, P. R., S. R. Siddhanti, P. Cohen, and P. J. Blackshear. 1993. Okadaic acidsensitive protein phosphatases dephosphorylate MARKS, a major protein kinase C substrate. FEBS Lett. 336: 37–42.

    PubMed  CAS  Google Scholar 

  150. Clowes, A. W., and S. M. Schwartz. 1985. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ. Res. 56: 139–145.

    PubMed  CAS  Google Scholar 

  151. Traber, M. G., L. L. Rudel, G. W. Burton, L. Hughes, K. U. Ingold, and H. J. Kayden. 1990. Nascent VLDL from liver perfusions of cynomolgus monkeys are preferentially enriched in RRR-compared with SRR-alpha-tocopherol: studies using deuterated tocopherols. J. Lipid Res. 31: 687–694.

    PubMed  CAS  Google Scholar 

  152. Burton, G. W., and K. U. Ingold. 1989. Vitamin E as an in vitro and in vivo antioxidant. Ann. N.Y. Acad. Sci. 570: 7–22.

    PubMed  CAS  Google Scholar 

  153. Kanno, T., T. Utsumi, H. Kobuchi, Y. Takehara, J. Akiyama, T. Yoshioka, A. A. Horton, and K. Utsumi. 1995. Inhibition of stimulus-specific neutrophil Superoxide generation by alpha-tocopherol. Free Rad. Res. 22: 431–440.

    CAS  Google Scholar 

  154. Suzuki, Y. J., and L. Packer. 1993. Inhibition of NF-kappa B activation by vitamin E derivatives. Biochem. Biophys. Res. Commun. 193: 277–283.

    PubMed  CAS  Google Scholar 

  155. Yoshioka, K., T. Deng, M. Cavigelli, and M. Karin. 1995. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc. Natl Acad. Sci. USA 92: 4972–4976.

    PubMed  CAS  Google Scholar 

  156. Morisaki, N., J. A. Lindsey, J. M. Stitts, H. Zhang, and D. G. Cornwell. 1984. Fatty acid metabolism and cell proliferation. V. Evaluation of pathways for the generation of lipid peroxides. Lipids 19: 381–394.

    PubMed  CAS  Google Scholar 

  157. Hennekens, C. H., and J. M. Gaziano. 1993. Antioxidants and heart disease: epidemiology and clinical evidence. Clin. Cardiol. 16: 10–13.

    Google Scholar 

  158. Boscoboinik, D., E. Chatelain, G. M. Bargoli, and A. Azzi. 1992. Molecular basis of alpha-tocopherol inhibition of smooth muscle cell proliferation in vitro, pp. 164–177. In I. Emerit and B. Chance (eds.). Free Radicals and Aging. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  159. Boscoboinik, D., N. K. Özer, U. Moser, and A. Azzi. 1995. Tocopherols and 6-hydroxy-chroman-2-carbonitrile derivatives inhibit vascular smooth muscle cell proliferation by a nonantioxidant mechanism. Arch. Biochem. Biophys. 318: 241–246.

    PubMed  CAS  Google Scholar 

  160. Boscoboinik, D., A. Szewczyk, and A. Azzi. 1991. Alpha-tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity. Arch. Biochem. Biophys. 286: 264–269.

    PubMed  CAS  Google Scholar 

  161. Boscoboinik, D., A. Szewczyk, C. Hensey, and A. Azzi. 1991. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J. Biol. Chem. 266: 6188–6194.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Azzi, A. et al. (1997). Modulation by Oxidants and Antioxidants of Signal Transduction and Smooth Muscle Cell Proliferation. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics