Skip to main content

The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury

  • Chapter
Detection of Mitochondrial Diseases

Abstract

Opening of a non-specific, high conductance permeability transition pore or megachannel in the inner mitochondrial membrane causes onset of the mitochondrial permeability transition, which is characterized by mitochondrial swelling, depolarization and uncoupling. Inducers of the permeability transition include Ca2+, oxidant stress and a permissive pH greater than 7.0. Blockers include cyclosporin A, trifluoperazine and pH < 7. Using laser scanning confocal microscopy, we developed techniques to visualize onset of the mitochondrial permeability transition in situ in living cells. In untreated cells, the permeability transition pore is continuously closed and does not ‘flicker’ open. By contrast, the pore opens in liver and heart cells after exposure to oxidant chemicals, calcium ionophore, hypoxia and ischemia/reperfusion, causing mitochondrial uncoupling and aggravation of ATP depletion. In injury to hepatocytes from tert-butylhydroperoxide, an analog of lipid hydroperoxides generated during oxidative stress, onset of the mitochondrial permeability transition is preceded by oxidation of mitochondrial pyridine nucleotides, mitochondrial generation of oxygen radicals and an increase of mitochondrial Ca2+, all inducers of the mitochondrial permeability transition. In ischemia, the acidosis of anaerobic metabolism protects strongly against cell death. During reperfusion, recovery of pH to normal levels is a stress that actually precipitates cell killing. Onset of the mitochondrial permeability transition may be responsible, in part, for this pH-dependent injury, or pH paradox. The mitochondrial permeability transition may also be responsible for a variety of pathological phenomena. In particular, the mitochondrial permeability transition may underlie Reye’s syndrome and Reye’s-like drug toxicities. In conclusion, multiple mechanisms contribute to cell injury after hypoxia, ischemia/reperfusion and toxic chemicals, but a common final pathway leading to acute cellular necrosis may be ATP depletion after mitochondrial failure. One important mechanism causing mitochondrial failure is the mitochondrial permeability transition, which both uncouples oxidative phosphorylation and accelerates ATP hydrolysis. Interventions that block this pH-dependent phenomenon protect against onset of cell death. (Mol Cell Biochem 174: 159–165, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyllies AH: Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11: 95–103, 1992

    Article  Google Scholar 

  2. Majno G, Joris I: Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146: 3–15, 1995

    PubMed  CAS  Google Scholar 

  3. Anundi I, King J, Owen DA, Schneider H, Lemasters JJ, Thurman RG: Fructose prevents hypoxic cell death in liver. Am J Physiol 253: G390–G396, 1987

    PubMed  CAS  Google Scholar 

  4. Gores GJ, Nieminen A-L, Fleishman KE, Dawson TL, Herman B, Lemasters JJ: Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes. Am J Physiol 255: C315–C322, 1988

    PubMed  CAS  Google Scholar 

  5. Nieminen A-L, Dawson TL, Gores GJ, Kawanishi T, Herman B, Lemasters JJ: Protection by acidic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibition, ionophores and oxidant chemicals. Biochem Biophys Res Commun 167: 600–606, 1990

    Article  PubMed  CAS  Google Scholar 

  6. Di Monte D, Sandy DMS, Blank L, Smith MT: Fructose prevents 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced ATP depletion and toxicity in isolated hepatocytes. Biochem Biophys Res Commun 153: 734–740, 1988

    Article  PubMed  Google Scholar 

  7. Nieminen A-L, Saylor AK, Herman B, Lemasters JJ: ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am J Physiol 267: C67–C74, 1994

    PubMed  CAS  Google Scholar 

  8. Qian T, Herman B, Lemasters JJ: Br-A23187 toxicity in hepatocytes: role of the mitochondrial permeability transition (MTP). Fund Appl Toxicol 30 (Suppl.): 88, 1996

    Google Scholar 

  9. Hunter DR, Haworth RA, Southard JH: Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251: 5069–5077, 1976

    PubMed  CAS  Google Scholar 

  10. Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195: 453–459, 1979

    Article  PubMed  CAS  Google Scholar 

  11. Bernardi P, Broekemeier KM, Pfeiffer DR: Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26: 509–517, 1994

    Article  PubMed  CAS  Google Scholar 

  12. Fournier N, Ducet G, Crevat A: Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19: 297–303, 1987

    Article  PubMed  CAS  Google Scholar 

  13. Crompton M, Ellinger H, Costi A: Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255: 357–360, 1988

    PubMed  CAS  Google Scholar 

  14. Szabo I, Zoratti M: The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 266: 3376–3379, 1991

    PubMed  CAS  Google Scholar 

  15. Zoratti M, Szabo I: The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176, 1995

    Article  PubMed  Google Scholar 

  16. Imberti R, Nieminen A-L, Duncan PR, Herman B, Lemasters JJ: Mitochondrial inhibition and uncoupling preceding lethal injury to rat hepatocytes by r-butyl hydroperoxide: protection by fructose, oligomycin, cyclosporin A and trifluoperazine. Hepatology 12: 933, 1990

    Google Scholar 

  17. Nazareth W, Yafei N, Crompton M: Inhibition of anoxia-induced injury in heart myocytes by cyclosporin. J Mol Cell Cardiol 23: 1351–1354, 1991

    Article  PubMed  CAS  Google Scholar 

  18. Griffiths EJ, Halestrap AP: Protection by cyclosporin A of ischemia/ reperfusion-induced damage to isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Imberti R, Nieminen A-L, Herman B, Lemasters JJ: Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals. Res Commun Chem Pathol Pharmacol 78: 27–38, 1992

    PubMed  CAS  Google Scholar 

  20. Imberti R, Nieminen A-L, Herman B, Lemasters JJ: Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butyl hydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Therapeut 265: 392–400, 1993

    CAS  Google Scholar 

  21. Kass GE, Juedes MJ, Orrenius S: Cyclosporin A protects hepatocytes against prooxidant-induced killing. A study on the role of mitochondrial Ca2+ cycling cytotoxicity. Biochem Pharmacol 44:1995–2003, 1992

    Article  PubMed  CAS  Google Scholar 

  22. Broekemeier KM, Carpenter-Deyo L, Reed DJ, Pfeiffer DR: Cyclosporin A protects hepatocytes subjected to high Ca2+ and stress. FEBS Lett 304: 192–194, 1992

    Article  PubMed  CAS  Google Scholar 

  23. Snyder JW, Pastorino JG, Attie AM, Farber JL: Protection by cyclosporin A of cultured hepatocytes from the toxic consequences of the loss of mitochondrial energization produced by l-methyl-4-phenylpyridinium. Biochem Pharm 44: 833–835, 1992

    Article  PubMed  CAS  Google Scholar 

  24. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL: Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268: 13791–13798, 1993

    PubMed  CAS  Google Scholar 

  25. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G: Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–377, 1995

    Article  PubMed  CAS  Google Scholar 

  26. Nieminen A-L, Saylor AK, Tesfai SA, Herman B, Lemasters JJ: Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307: 99–106, 1995

    PubMed  CAS  Google Scholar 

  27. Nieminen A-L, Saylor AK, Tesfai SA, Herman B, Lemasters JJ: Oxidative-stress-induced mitochondrial permeability transition in rat hepatocytes. Role of mitochondrial NAD(P)H, Ca2+ and reactive oxygen species. Biophys J 68: A399, 1995

    Article  Google Scholar 

  28. Nieminen A-L, Byrne AM, Herman B, Lemasters JJ: The mitochondrial permeability transition in hepatocytes induced by t-butylhydroperoxide: NAD(P)H and reactive oxygen species. Am J Physiol, in press

    Google Scholar 

  29. Braunwald E, Kloner RA: Myocardial reperfusion: a double-edged sword? J Clin invest 76: 1713–1719, 1985

    Article  PubMed  CAS  Google Scholar 

  30. McCord JM: Oxygen-derived free radicals in postischemic tissue injury. New Engl J Med 312: 159–163, 1985

    Article  PubMed  CAS  Google Scholar 

  31. Nayler WG, Poole-Wilson PA, Williams A: Hypoxia and calcium. J Mol Cell Cardiol 11: 683–706, 1979

    Article  PubMed  CAS  Google Scholar 

  32. Steenbergen C, Hill ML, Jennings RB: Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res 60: 478–486, 1987

    Article  PubMed  CAS  Google Scholar 

  33. Zimmerman ANE, Daems SE, Hulsmann WC, Snijder J, Wisse E, Durrer E: Morphological changes of heart muscle caused by successive perfusion with Ca free and Ca containing solutions (Ca paradox). Circ Res 1:201–209, 1967

    CAS  Google Scholar 

  34. Bing OH, Brooks WW, Messer JV: Heart muscle viability following hypoxia: protective effect of acidosis. Science 180: 1297–1298, 1973

    Article  PubMed  CAS  Google Scholar 

  35. Pentilla A, Trump BF: Extracellular acidosis protects Ehrlich tumor cells and rat renal cortex against anoxic injury. Science 185: 277–278, 1974

    Article  Google Scholar 

  36. Bonventre JV, Cheung JY: Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol 249: C149–C159, 1985

    PubMed  CAS  Google Scholar 

  37. Gores GJ, Fleishman KE, Dawson TE, Herman B, Nieminen A-L, Lemasters JJ: Extracellular acidosis delays onset of cell death in ATP depleted hepatocytes. Am J Physiol 255: C315–C322, 1988

    PubMed  CAS  Google Scholar 

  38. Gores GJ, Nieminen A-L, Wray BE, Herman B, Lemasters JJ: Intrac-ellular pH during ‘chemical hypoxia’ in cultured hepatocytes. J Clin Invest 83: 386–396, 1989

    Article  PubMed  CAS  Google Scholar 

  39. Currin RT, Gores GJ, Thurman RG, Lemasters JJ: Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a ‘pH paradox’. FASEB J 5: 207–210, 1991

    PubMed  CAS  Google Scholar 

  40. Bond JM, Herman B, Lemasters JJ: Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Biochem Biophys Res Commun 179: 798–803, 1991

    Article  PubMed  CAS  Google Scholar 

  41. Caldwell-Kenkel JC, Currin RT, Coote A, Thurman RG, Lemasters JJ: Reperfusion injury to endothelial cells after cold storage of rat livers: protection by mildly acidic pH and lack of protection by antioxidants. Transplant Int 8: 77–85, 1995

    Article  CAS  Google Scholar 

  42. Qian T, Nieminen A-L, Herman B, Lemasters JJ: Acidotic intracellular pH, cyclosporin A and glycine protect cultured hepatocytes against ischemia/reperfusion injury. Abstract Book: AASLD Single Topic Symposium on Oxidant Stress and Liver Disease, 1995

    Google Scholar 

  43. Bond JM, Chacon E, Herman B, Lemasters JJ: Intracellular pH and calcium homeostasis during the pH paradox of reperfusion injury to cultured neonatal rat cardiac myocytes. Am J Phsyiol 265: C129–C 137, 1993

    CAS  Google Scholar 

  44. Qian T, Nieminen AL, Herman B, Lemasters JJ: The role of pHi and Na+ in reperfusion injury to rat hepatocytes: protection by cyclosporin A and glycine. Submitted for publication, 1996

    Google Scholar 

  45. Zahrebelski G, Nieminen A-L, Al-Ghoul K, Qian T, Herman B, Lemasters JJ: Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: a laser scanning confocal microscopic study. Hepatology 21: 1361–1372, 1995

    PubMed  CAS  Google Scholar 

  46. Bowers KC, Allshire AP, Cobbold PH: Bioluminescent measurement in single cardiomyocytes of sudden cytosolic ATP depletion coincident with rigor. J Mol Cell Cardiol 24: 213–218, 1992

    Article  PubMed  CAS  Google Scholar 

  47. Qian T, Herman B, Lemasters JJ: Br-A23187 toxicity in hepatocytes: role of the mitochondrial permeability transition (MPT). Fund Appl Toxicol 30 (Suppl.): 88, 1996

    Google Scholar 

  48. Heubi JE, Partin JC, Partin JS, Schubert WK: Reye’s syndrome: current concepts. Hepatology 7: 155–164, 1987

    Article  PubMed  CAS  Google Scholar 

  49. Trost LC, Lemasters JJ: The mitochondrial permeability transition: a new pathophysiological mechanism for Reye’s syndrome and toxic liver injury. J Pharmacol Exp Therapeut 278: 1000–1005, 1996

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemasters, J.J., Nieminen, AL., Qian, T., Trost, L.C., Herman, B. (1997). The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics