Skip to main content

Abstract

Agar was discovered in Japan in the mid-17th century (Yanagawa, 1942; Hayashi and Okazaki, 1970; Matsuhashi, 1978), although its name is Malayan (designating certain seaweeds and the jellies produced from them). The Japanese term for agarkanten,means ‘cold sky’ and refers to the cold winter days or the cold weather in the mountains where such materials were manufactured. Following agar’s exploitation in Japan, its use as a food was introduced to the natives by Chinese settlers (Tseng, 1946). The consumption of various kinds of agar-gel-like seaweed extracts probably dates back to prehistoric times in the coastal areas of Japan. Agar and its ability to produce fruit and vegetable jellies were introduced to Europe by Dutch people living in Indonesia. In 1882, Robert Koch introduced agar as a culture medium to the world. Its introduction to bacteriology followed, after its first application by Walter Hesse (who got the idea from his wife Frau Fanny Hesse) as a replacement for gelatin in culturing microbes. Agar has since become the single most important bacteriological medium. Today, Ge?iite-gellan gum is used as a partial alternative to agar media and in related applications, particularly for culturing thermophilic microorganisms, since Gelrite gels are thermostable and can withstand prolonged incubations at high temperatures (Lin and Cassida, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablett, S., Liliford, P.J., Baghdadi, S.M.A. and Derbyshire, W. (1978) J. Colloid Interface Sci., 67, 355–9.

    Article  CAS  Google Scholar 

  • Araki, C. (1937) Agar—agar. III. Acetylation of the agar-like substance of Gelidium amansii L. J. Chem. Soc. Japan, 58, 1338–50.

    CAS  Google Scholar 

  • Araki, C. (1958) Seaweed polysaccharide, in Proc. 4th Int. Cong. Biochem., Vienna, Pergamon Press, London, pp. 15–30.

    Google Scholar 

  • Araki, C. (1969) Studies on agar skeleton of agaropectin. Mem. Shijonawate-gakuen Women’s Coll., 3, 1.

    Google Scholar 

  • Araki, C. (1980) Carbohydrates of agar, in Jikken Kagaku Koza, vol. 22. Chemical Society of Japan, Tokyo, 468–87.

    Google Scholar 

  • Ariyama, H. and Takahasi, K. (1931) The relative nutritional value of various carbohydrates and related compounds. Bull. Agric. Chem. Soc. Japan, 6, 1–5.

    Article  Google Scholar 

  • Armisen, R. and Kain, J.M. (1995) World-wide use and importance of Gracilaria. J. Appl. Phycol., 7(3), 231–43.

    Article  Google Scholar 

  • Amott, S., Fulner, A., Scott, W.E. et al. (1974) The agarose double helix and its function in agarose gel structure. J. Mol. Biol., 90(2), 269–84.

    Article  Google Scholar 

  • Bouakkaz, A., Cachard, C. and Gimenez, G. (1994) Evaluation of agar, solid material with acoustic properties equivalent to water. J. Phys. 4(5), 1221–4.

    Google Scholar 

  • Carr, J.M., Sufferling, K. and Poppe, J. (1995) Hydrocolloids and their use in the confectionery industry. Food Technol. 49(7), 41–244.

    Google Scholar 

  • Chirapart, A., Ohno, M., Ukeda, H. et al. (1995) Chemical compositions of agars from a newly reported Japanese agarophyte Gracilariopsis lemaneiformis. J. Appl. Phycol.,7(4), 359–65.

    Article  CAS  Google Scholar 

  • Cottrell, I.W. and Baird, J.K. (1980) Gums, in Kirk-Othmer Encyclopedia of Chemical Technology, vol. 12, 3rd edn, Wiley Interscience, New York, pp. 45–66.

    Google Scholar 

  • Dea, I.C.A., McKinnon, A.A. and Rees, D.A. (1972) Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: reversible changes in conformation and association of agarose, carrageenan and galactomannans. J. Mol. Biol. 68, 153–72.

    Article  CAS  Google Scholar 

  • Duckworth, M. and Yaphe, W. (1971a) The structure of agar. Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res., 16, 189–97.

    Article  CAS  Google Scholar 

  • Duckworth, M. and Yaphe, W. (1971b) The structure of agar. Part II. The use of a bacterial agarose to elucidate structural features of the charged polysaccharides in agar. Carbohydr. Res. 16, 435–45.

    Article  CAS  Google Scholar 

  • FDA (1972) GRAS Food Ingredients: Agar—Agar, PB 221–225, NTIS, US Department of Commerce, Washington, DC.

    Google Scholar 

  • FDA (1980) Agar—Agar, 21 CFR 184.1115, No. 57,912,15, US Department of Commerce, Washington, DC.

    Google Scholar 

  • Fleurence, J. and Guyader, O. (1995) Contribution of electrophoresis to the identification of red seaweeds (Gracilaria sp.) used as food ingredients. Sc. Aliments, 15(1), 43–8.

    CAS  Google Scholar 

  • Food Chemicals Codex III (1981) Agar, National Academy Press, Washington, DC, pp. 11–12.

    Google Scholar 

  • Funaki, K. (1947) Manufacturing Method of Agar from Seaweeds. Japanese Patent No. 175290. Gifu Pref. Agar Research Laboratory (1971) A Study on Processing of Agar from Agarophytes other than Gelidium Species. Special report of GPARL for 1968–70 fiscal year.

    Google Scholar 

  • Gifu Pref. Agar Research Laboratory (1978) Studies on Preservation of Agar and Agar Seaweeds. Special report of GPARL for the 1968–70 fiscal year.

    Google Scholar 

  • Glicksman, M. (1969) Gum Technology in the Food Industry, ch. 8, Academic Press, New York, pp. 199–266.

    Google Scholar 

  • Glicksman, M. (1983) Food Hydrocolloids, vol 2 Seaweed Extracts, CRC Press, Boca Raton, FL, pp. 63–73.

    Google Scholar 

  • Guiseley, K.B. and Renn, D.W. (1977). Agarose: purification, properties and biochemical applications, in Marine Colloids, FMC Bio-Products, Rockland, ME.

    Google Scholar 

  • Guiseley, K.B., Stanley, N.F. and Whitehouse, P.A. (1980) Carrageenan, in Handbook of Water-Soluble Gums and Resins (ed. R.L. Davidson), McGraw-Hill, New York, pp. 5–11.

    Google Scholar 

  • Harmuth-Hoene, A.E. (1980) Effects of dietary guar flour and agar on N balance, mineral and trace element uptake and digestive energy in humans. Berichte der Bundeforchungsanstalt für Ernahrung, No. 5, Karlsruhe, Germany.

    Google Scholar 

  • Hayashi, A., Kinoshita, K., Kuwano, M. et al. (1978) Studies of the agarose gelling system by the fluorescence polarization method. Polym. J.,10(5), 485–94.

    Article  CAS  Google Scholar 

  • Hayashi, K. and Okazaki, A. (1970) ’Kanten’ Handbook, Korin-shoin, Tokyo, pp. 1–534.

    Google Scholar 

  • Hirase, S. (1957) Chemical constitution of agar—agar. XIX. Pyruvic acid as a constituent of agar—agar. Identification and estimation of pyruvic acid in the hydrolysis of agar. Bull. Chem. Soc. Japan, 30, 68–70. (Chem. Abstr. 52, 9479i).

    Article  CAS  Google Scholar 

  • Hjerten, S. (1962) A new method for preparation of agarose for gel electrophoresis. Biochim. Biophys. Acta, 62, 445–9.

    Article  CAS  Google Scholar 

  • Hove, E.L. and Herndon, J.F. (1957) Growth of rabbits on purified diets. J. Nutr., 63(2), 193–9. Kaletunc, G., Normand, M.D., Nussinovitch, A. et al. (1991) Determination of gels elasticity by successive compression decompression cycles. Food Hydrocolloids, 5, 237–47.

    Google Scholar 

  • Kohyama, K., Ishikawa, Y., Nishinari, K. et al. (1989) An automatic measurement of gel melting point. Sci. Aliments, 9(2), 227–37.

    CAS  Google Scholar 

  • Lai, M.F., Li, C.F. and Li, C.Y. (1994) Characterization and thermal behaviour of 6 sulfated polysaccharides from seaweeds Food Hydrocolloids, 8(3–4), 215–32.

    Article  CAS  Google Scholar 

  • Lin, C.C. and Cassida, L.E., Jr (1987) Gelrite as a gelling agent in media for the growth of thermophilic microorganisms. Appl. Environ. Microbiol., 47, 427–30.

    Google Scholar 

  • Matsuhashi, T. (1972) Firmness of agar gel, with respect to heat energy required to dissociate cross linkage of gel, in Proc. 7th Int. Seaweed Symp. (ed. T. Nishizawa), University of Tokyo Press, Japan, p. 460.

    Google Scholar 

  • Matsuhashi, T. (1974) Processing Method of Tokoroten and Agar from Seaweeds. Japanese Patent No. 739750.

    Google Scholar 

  • Matsuhashi, T. (1978) Fundamental studies on the manufacture of agar. PhD thesis, Tokyo University of Agriculture, Tokyo.

    Google Scholar 

  • Matsuhashi, T. (1981) Kanten, in New Edition Handbook of Refrigeration and Air-conditioning, vol. Applications, Japanese Association of Refrigeration, Tokyo, p. 946.

    Google Scholar 

  • Matsuhashi, T. (1990) Agar, in Food Gels (ed. P. Harris), Elsevier Applied Science, London, pp. 1–53.

    Google Scholar 

  • Meer, W. (1980) Agar, in Handbook of Water-soluble Gums and Resins (ed. R.L. Davidson), McGraw-Hill, New York, pp. 7.2–7.14.

    Google Scholar 

  • Moirano, A.L. (1977) Sulfated seaweed polysaccharides, in Food Colloids, ch. 8 (ed. H.D. Graham), Avi Publishing, Westport, CT.

    Google Scholar 

  • Morris, E.R. and Norton, I.T. (1983) Polysaccharide aggregation in solutions and gels, in Aggregation Processes in Solution (eds W. Jones and J. Gormally), Elsevier, Amsterdam.

    Google Scholar 

  • Morris, V.J. (1986) Gelation of polysaccharides, in Functional Properties of Food Macro-molecules (eds J.R. Mitchell and D.A. Ledward), Elsevier, Amsterdam, pp. 121–70.

    Google Scholar 

  • Mueller, W.D. and Steibing, A. (1993) Suitability of plant and animal gelling agents for manufacture of canned corned beef. Fleischwirtschaft, 73(11), 1307–11.

    CAS  Google Scholar 

  • Murano, E. and Kain, J.M. (1995) Gracilaria and its cultivation. J. Appl. Phycol,7(3), 245–54.

    CAS  Google Scholar 

  • Nash, N.H. (1960) Functional aspects of hydrocolloids in controlling crystal structure in foods, in Physical Functions of Hydrocolloids, American Chemical Society, Washington, DC, pp. 45–58.

    Google Scholar 

  • Newton, L. (1951) Seaweed Utilization, Sampson Low, London, pp. 107–8.

    Google Scholar 

  • Nishinari, K., Watase, M., Miyoshi, E. et al. (1995) Effects of sugar on the gel—sol transition of agarose and x-carrageenan. Food Technol. Chicago,49, 10, 90, 92–6.

    Google Scholar 

  • Nussinovitch, A., Kaletunc, G., Normand, M.D. et al. (1990a) Recoverable work vs. asymptotic relaxation modulus in agar, carrageenan and gellan gels. J. Texture Studies, 21, 427–38.

    Article  Google Scholar 

  • Nussinovitch, A., Kopelman, I.J. and Mizrahi, S. (1990b) Evaluation of force deformation data as indices to hydrocolloid gel strength and perceived texture. Int. J. Food Sci. Technol. 25, 692–8.

    Article  Google Scholar 

  • Nussinovitch, A., Kopelman, I.J. and Mizrahi, S. (1990c) Effect of hydrocolloid and minerals content on the mechanical properties of gels. Food Hydrocolloids, 4(4), 257–65.

    Article  CAS  Google Scholar 

  • Nussinovitch, A. and Peleg, M. (1990) Strength—time relationship of agar and alginate gels. J.Texture Studies,21, 51–60.

    Article  Google Scholar 

  • Nussinovitch, A., Peleg, M. and Normand, M.D. (1989) A modified Maxwell and a non-exponential model for characterization of the stress relaxation of agar and alginate gels. J. Food Sci.,54, 1013–16.

    Article  CAS  Google Scholar 

  • Padua, G.W. (1993) Microwave heating of agar gels containing sucrose. J. Food Sci. 58(6), 1426–8.

    Article  CAS  Google Scholar 

  • Percival, E. (1972) Chemistry of agaroids, carrageenans and furcellaran. J. Sci. Food Agric., 23, 933–40.

    Article  CAS  Google Scholar 

  • Poppe, J. (1995) New approaches to gelling agents in confectionery. Manufacturing-Confectioner, 75(5), 119–26.

    Google Scholar 

  • Rees, D.A. (1969) Structure, conformation and mechanism in formation of polysaccharide gels and networks, in Advances in Carbohydrate Chemistry and Biochemistry (eds M.L. Wolform and R.S. Tipson), Academic Press, New York, pp. 267–232.

    Google Scholar 

  • Schafer, S.E. and Stevens, E.S. (1995) A reexamination of the double-helix model for agarose gels using optical rotation. Biopolymers,36(1), 103–8.

    Article  CAS  Google Scholar 

  • Segawa, S. (1965) Genshoku Nippon Kaiso Zukan (Natural-Color Picture Book of Marine Seaweeds), Hoikusha, Tokyo.

    Google Scholar 

  • Seip, W.F. (1974) Specifications and experience in the use of bacteriological grade agar—agar by a leading manufacturer of dehydrated media, in Proc. 8th Int. Seaweed Symp., Bangor, Wales, August 17–24.

    Google Scholar 

  • Selby, H.H. and Wynne, W.H. (1973) Agar, in Industrial Gums (ed. R.L. Whistler), Academic Press, New York, pp. 19–48.

    Google Scholar 

  • Shehata, H.A., Shalaby, M.T. and Hassan, A.M. (1994) Gelatin and some other natural thickening agents for use in canned corned beef. J. Food Sci. Technol. India, 31(4), 298–301.

    CAS  Google Scholar 

  • Smith, F. and Montgomery, R. (1959) The Chemistry of Plant Gums and Mucilage, Reinhold, New York, p. 426.

    Google Scholar 

  • Steiner, A. and Rothe, L.B. (1949) Stabilizer for icings. US Patent 2,823–129.

    Google Scholar 

  • Takano, R., Hayashi, K. and Hara, S. (1995) Highly methylated agars with a high gel-melting point from the red seaweed Gracilaria eucheumoide. Phytochemistry, 40(2), 487–90.

    Article  CAS  Google Scholar 

  • Takegawa, O. (1963) Strength of Agar Gels, Nippon Kaiso-kogio Res. Lab. Report No . 2.

    Google Scholar 

  • Tashiro, Y., Mochizuki, Y., Ogawa, H. et al. (1996) Molecular weight determination of agar by sedimentation equilibrium measurements. Fisheries Sci. 62(1), 80–3.

    CAS  Google Scholar 

  • Tseng, C.K. (1946) Phycolloids: useful seaweed polysaccharides, in Colloid Chemistry,vol. VI, (ed. J. Alexander), Reinhold, New York, p. 630.

    Google Scholar 

  • Watase, M. and Nishinari, K. (1986) Rheology, DSC and volume or weight change induced by immersion in solvents for agarose and kappa-carrageenan gels. Polym. J., 18, 1017–25.

    Article  CAS  Google Scholar 

  • Watase, M., Nishinari, K., Clark, A.H. et al. (1989) Differential scanning calorimetry, rheological, X-ray and NMR of very concentrated agarose gels. Macromolecules, 22(3), 1196–201.

    Article  CAS  Google Scholar 

  • Yanagawa, T. (1942) Kogyo-tosho,Tokyo, pp. 1–352.

    Google Scholar 

  • Yaphe, W. and Duckworth, M. (1972) The relationship between structures and biological properties of agars, in Proc. 7th Int . Seaweed Symp . (ed. T. Nishizawa), University of Tokyo Press, Japan, pp. 15–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nussinovitch, A. (1997). Agar. In: Hydrocolloid Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6385-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6385-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7933-1

  • Online ISBN: 978-1-4615-6385-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics