Skip to main content

Abstract

In the highly informative and thorough Biochemistry of the Amino Acids by Meister, a steeply rising curve is presented, plotting the total number of new amino acids reported from about 1810 to the 1960’s.(1) The accretion of knowledge of amino acid metabolism probably follows a similar curve and has made it necessary for most writers on the subject, even in the relatively limited area of application to the nervous system, to confine their description and discussion to convenient fragments. For this reason this section will deal only with selected aliphatic amino acids confining attention to alanine, aspartic acid, asparagine, serine, threonine, leucine, iso-leucine, valine, proline, hydroxyproline, arginine, and some related derivatives. The other amino acids are dealt with in appropriate sections of this handbook. For guidance and instruction the writer has leaned heavily on certain reviews. Foremost among these is the aforementioned authoritative text by Meister.(1) Other important sources include The Enzymes, edited by Boyer, Lardy, and Myrbäck, Amino Acid Pools, edited by Holden; Protein and Amino Acid Nutrition, edited by A. A. Albanese; New Methods of Nutritional Biochemistry, edited by A. A. Albanese; and Mammalian Protein Metabolism, edited by H. N. Munro and J. B. Allison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Meister, Biochemistry of the Amino Acids, Academic Press, New York (1965).

    Google Scholar 

  2. S. Jacobs, in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 14, pp. 177–202, Interscience, New York (1966).

    Chapter  Google Scholar 

  3. H. H. Tallan, S. Moore, and W. H. Stein, Studies on the free amino acids and related compounds in the tissues of the cat, J. Biol. Chem. 211:927–939 (1954).

    PubMed  CAS  Google Scholar 

  4. N. Okumura, S. Otsuki, and T. Aoyama, Studies on the free amino acids and related compounds in the brains of fish, amphibia, reptile, aves and mammal by ion-exchange chromatography, J.Biochem. (Tokyo) 46:207–212 (1959).

    CAS  Google Scholar 

  5. N. Okumura, S. Otsuki, and A. Kameyama, Studies on free amino acids in human brain, J.Biochem. (Tokyo) 47:315–320 (1960).

    Google Scholar 

  6. Y. Yamamoto, A. Mori, and D. Jinnai, Alterations of amino acids in rabbit brain caused by repetitive convulsive fits and comparsion of amino acid contents in epileptic and nonepileptic human brain, J. Biochem. (Tokyo) 49:368–372 (1961).

    CAS  Google Scholar 

  7. N. Robinson and C. B. Williams, Amino acids in human brain, Clin. Chim. Acta 12:311–317(1965).

    Article  CAS  Google Scholar 

  8. J. C. Dickinson and P. B. Hamilton, The free amino acids of human spinal fluid determined by ion-exchange chromatography, J.Neurochem. 13:1179–1187 (1966).

    Article  PubMed  CAS  Google Scholar 

  9. J. L. Mangan and V. P. Whittaker, The distribution of free amino-acids in subcellular fractions of guinea-pig brain, Biochem. J. 98: 128–137 (1966).

    PubMed  CAS  Google Scholar 

  10. A. R. Dravid and W. A. Himwich in Progress in Brain Research (W. A. Himwich and H. E. Himwich, eds.), Vol. 9, pp. 170–173, American Elsevier, New York 1964.

    Google Scholar 

  11. M. Wender and Z. Waligóra, The content of amino acids in the proteins of the developing nervous system of the guinea pig-I. J.Neurochem. 7:259–263 (1961).

    Article  CAS  Google Scholar 

  12. M. Wender and Z. Waligóra, The content of amino acids in the proteins of the developing nervous system of the guinea pig-II, J.Neurochem. 9: 115–118 (1962).

    Article  CAS  Google Scholar 

  13. P. Mandel, Y. Godin, J. Mark, and C. Kayser, The distribution of free amino acids in the central nervous system of garden dormice during hibernation, J.Neurochem. 13:533–536(1966).

    Article  PubMed  CAS  Google Scholar 

  14. H. H. Tallan, S. Moore, and W. H. Stein, L-Cystathionine in human brain, J.Biol. Chem. 230:707–716 (1958).

    PubMed  CAS  Google Scholar 

  15. H. G. Knauff, G. Mayer and D. Marx, Über die aminosäurezusammensetzung der gehirnproteine, Hoppe-Seylers, Z. Physiol. Chem. 326:78–88 (1961).

    Article  CAS  Google Scholar 

  16. R. J. Williams, Biochemical Individuality, Wiley, New York (1956).

    Google Scholar 

  17. R. S. DeRopp and E. H. Snedeker, Sequential one-dimensional chromatography: analysis of free amino acids in the brain, Anal. Biochem. 1:424–432 (1960).

    Article  CAS  Google Scholar 

  18. S. Blackburn, in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 13, pp. 1–45, Interscience, New York (1965).

    Chapter  Google Scholar 

  19. R. L. Munier and G. Sarrazin, Chromato-electrophorese des aminoacides en couche mince de poudre de cellulose, I, II, III, Bull. Soc. Chim. France 1363–1369 (1966).

    Google Scholar 

  20. S. Samuels and S. S. Ward, Aminoaciduria screening by thin-layer high voltage electrophoresis and chromatography on microplates, J.Lab. Clin. Med. 67:669–677 (1966).

    CAS  Google Scholar 

  21. M. Brenner, A. Wiederwieser, and G. Pataki in Thin-layer Chromatography (E. Stahl, ed.), pp. 391–440, Springer-Verlag, New York (1965).

    Google Scholar 

  22. B. Weinstein in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 14, pp. 203–323, Interscience, New York (1966).

    Chapter  Google Scholar 

  23. W. R. Gray and B. S. Hartley, A fluorescent end-group reagent for proteins and peptides, Biochem. J. 89:59P (1963).

    Google Scholar 

  24. N. Seiler and M. Wiechmann, Quantitative bestimmung von aminen und von aminosäuren als 1-dimethylan ino-naphthalin-5-sulfon-saureamide auf Dünn-schichtchromatogrammen, Z. Anal. Chem. 220:109–127 (1966).

    Article  CAS  Google Scholar 

  25. K. Satake, T. Okuyama, M. Ohashi, and T. Shinoda, The spectrophotometric determination of amine, amino acid and peptide with 2,4,6,-trinitrobenzene-1-sulfonic acid, J.Biochem. (Tokyo) 47:654–660 (1960).

    CAS  Google Scholar 

  26. L. C. Mokrasch, Use of 2,4,6-trinitrobenzenesulfonic acid for the coestimation of amines, amino acids and proteins in mixtures, Anal. Biochem. 18:64–71 (1967).

    Article  CAS  Google Scholar 

  27. S. Matsushita, N. Iwami, and Y. Nitta, Colorimetric estimation of amino acids and peptides with the Folin phenol reagent, Anal. Biochem. 16:365–371 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. N. A. Matheson, An improved method of separating amino acids as N-2,4-dinitro-phenyl derivatives, Biochem. J. 88:146–155 (1963).

    PubMed  CAS  Google Scholar 

  29. N. A. Matheson, The isolation of amino acids from mixtures as their N-2,4-dinitro-phenyl derivatives, Biochem. J. 94:513–517 (1965).

    PubMed  CAS  Google Scholar 

  30. N. A. Matheson and M. Sheltawy, Determination of amino acids as 2,4-dinitro-phenyl derivatives, Biochem. J. 98:297–302 (1966).

    PubMed  CAS  Google Scholar 

  31. E. F. Gale in Methods of Biochemical Anaylsis (D. Glick, ed.), pp. 285–306, Inter-science, New York (1957).

    Chapter  Google Scholar 

  32. F. P. Chinard, Photometric estimation of proline and ornithine, J. Biol. Chem. 199:91–95 (1952).

    PubMed  CAS  Google Scholar 

  33. K. A. Piez, F. Irreverre, and H. L. Wolff, The separation and determination of cyclic imino acids, J.Biol. Chem. 223:687–697 (1956).

    PubMed  CAS  Google Scholar 

  34. D. Kruze and P. Wierzchowski, Determination of traces of proline in biological fluids, Anal. Biochem. 19:226–233 (1967).

    Article  PubMed  CAS  Google Scholar 

  35. R. E. Neuman and M. A. Logan, The determination of hydroxyproline J.Biol. Chem. 184:299–306(1950).

    PubMed  CAS  Google Scholar 

  36. D. J. Prockop and S. Udenfriend, A specific method for the analysis of hydroxy-proline in tissues and urine, Anal. Biochem. 1:228–239 (1960).

    Article  PubMed  CAS  Google Scholar 

  37. E. C. LeRoy, E. D. Harris, Jr., and A. Sjoerdsma, A modified procedure for radioactive hydroxyproline assay in urine and tissues after labeled proline administration, Anal. Biochem. 17:377–382 (1966).

    Article  PubMed  CAS  Google Scholar 

  38. H. E. Firschein and J. P. Shill, The determination of total hydroxyproline in urine and bone extracts, Anal. Biochem. 14:296–304 (1966).

    Article  PubMed  CAS  Google Scholar 

  39. C. L. Rosano, Enzymic method for determination of hydroxyproline, Anal. Biochem. 15:341–345(1966).

    Article  PubMed  CAS  Google Scholar 

  40. B. H. Nicolet and L. A. Shinn, The determination of serine by use of periodate, J.Biol. Chem. 139:687–692 (1941).

    CAS  Google Scholar 

  41. W. R. Frisell and C. C. Mackenzie, in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 6, pp. 63–77, Interscience, New York (1958).

    Chapter  Google Scholar 

  42. D. R. Keeney and J. M. Bremner, A simple steam distillation method of estimating β-hydroxy-α-amino acids, Anal. Biochem. 18:274–285 (1967).

    Article  CAS  Google Scholar 

  43. J. Hutzler, M. Odievre, and J. Dancis, Analysis for lysine, arginine, histidine and tyrosine in biological fluids, Anal. Biochem. 19:529–541 (1967).

    Article  PubMed  CAS  Google Scholar 

  44. K. Beyermann and E. Knoll, Enzymatische mikrobestimmung basischer amino-säuren, Z. Anal. Chem. 219:13–22 (1966).

    Article  CAS  Google Scholar 

  45. S. Sakaguchi, Über eine neue farbenreaktion von protein und arginin, J. Biochem. (Tokyo) 5:25–31 (1925).

    CAS  Google Scholar 

  46. K. R. Bhattacharya, J. Datta, and D. K. Roy, Application of Sakaguchi reaction to the quantitative estimation of arginine: a method involving paper chromatography, Arch. Biochem. Biophys. 84:377–392 (1959).

    Article  CAS  Google Scholar 

  47. J. F. Van Pilsum, in Methods of Biochemical Analysis (D. Glick, ed.), Vol. 7, pp. 193–215, Interscience, New York (1959).

    Chapter  Google Scholar 

  48. D. Hunninghake and S. Grisolia, A sensitive and convenient micromethod for estimation of urea, citrulline and carbamyl derivatives, Anal. Biochem. 16:200–205 (1966).

    Article  PubMed  CAS  Google Scholar 

  49. J. D. Broome, A method for estimating free asparagine and glutamine in biological fluids as trinitrophenyl derivatives, Nature 211:602–604 (1966).

    Article  CAS  Google Scholar 

  50. A. R. Patton and E. M. Foreman, Glycine reagent for paper chromatograms, Science 109:339 (1949).

    Article  PubMed  CAS  Google Scholar 

  51. R. L. Young and O. H. Lowry, Quantitative methods for measuring the histo-chemical distribution of alanine, glutamate and glutamine in brain, J.Neurochem. 13:785–794(1966).

    Article  PubMed  CAS  Google Scholar 

  52. R. T. Taylor and W. T. Jenkins, Leucine aminotransferase I. Colorimetric assays, J.Biol. Chem. 241:4391–4395 (1966).

    PubMed  CAS  Google Scholar 

  53. L. T. Graham, Jr., and M. H. Aprison, Fluorometric Determination of aspartate, glutamate and γ-aminobutyrate in nerve tissue using enzymic methods, Anal. Biochem. 15:487–497 (1966).

    Article  PubMed  CAS  Google Scholar 

  54. T. Matsuzawa and N. Katunuma, Colorimetric assays for serum alanine transaminase and lactic dehydrogenase using diazonium zinc salt, Anal. Biochem. 17:143–153 (1966).

    Article  PubMed  CAS  Google Scholar 

  55. W. L. Ryan and I. C. Wells, Homocitrulline and homoarginine from lysine, Science 144:1122–1123 (1964).

    Article  PubMed  CAS  Google Scholar 

  56. A. D. Smith, M. Benziman, and H. J. Strecker, The formation of ornithine from proline in animal tissues, Biochem. J. 104:557–564 (1967).

    PubMed  CAS  Google Scholar 

  57. H. H. Tallan in Amino Acid Pools (J. T. Holden, ed.), pp. 471–485, Elsevier, Amsterdam (1962).

    Google Scholar 

  58. F. Irrevere, R. L. Evans, A. R. Hayden, and R. Silber, Occurrence of gamma-guanidinobutyric acid, Nature 180:704–705 (1957).

    Article  Google Scholar 

  59. E. Roberts, S. Frankel and P. J. Harman, Amino Acids in nervous tissue, Proc. Soc. Exptl. Biol. Med. 74:383–387 (1950).

    CAS  Google Scholar 

  60. T. Takao, Isolation of L-α-aminoadipic acid from hog liver, Biochim. Biophys. Acta 117:490–492(1966).

    Article  PubMed  CAS  Google Scholar 

  61. M. M. Kini and J. H. Quastel, Carbohydrate-amino acid inter-relations in brain cortex in vitro, Nature 184:252–256 (1959).

    Article  PubMed  CAS  Google Scholar 

  62. H. J. Strecker in Metabolism of the Nervous System (D. Richter ed.), pp. 459–473, Pergamon Press, New York (1957).

    Google Scholar 

  63. J. H. Quastel in Ultrastructure and Metabolism in the Nervous System (S. R. Korey, A. Pope, and E. Robins, eds.), pp. 57–66, Williams and Wilkins, Baltimore (1962).

    Google Scholar 

  64. J. H. Quastel, in Metabolic Inhibitors (R. M. Hochster and J. H. Quastel, eds.), Vol. 2, pp. 517–538, Academic Press, New York (1963).

    Chapter  Google Scholar 

  65. R. S. DeRopp and E. H. Snedeker, Effects of drugs on amino acid levels in brain: Excitants and depressants, Proc. Soc. Exptl. Biol. Med. 106:696–700 (1961).

    CAS  Google Scholar 

  66. S. I. Singh and C. L. Malhotra, Amino acid content of monkey brain-IV, Effects of chlorpromazine on some amino acids of certain regions of monkey brain, J.Neuro-chem. 14:135–140 (1967).

    CAS  Google Scholar 

  67. J. K. Tews and W. E. Stone in Progress in Brain Research (W. A. Himwich and J. P. Schade, eds.), Vol. 16, pp. 135–163, American Elsevier, New York (1965).

    Google Scholar 

  68. N. Okumura, S. Otsuki, and H. Nasu. The influence of insulin hypoglycemic coma, repeated electroshocks and chlorpromazine or β -phenylisopropylmethylamine administration on the free amino acids in the brain, J.Biochem. (Tokyo) 46:247–252 (1959).

    CAS  Google Scholar 

  69. T. N. Pogorelova, Amino acid content in parts of the brain in hyperoxia, Dokl. Akad. Nauk SSR 167:1421–2 (1966).

    CAS  Google Scholar 

  70. A. E. R. DeGuglielmone and C. J. Gomez, Influence of neonatal hypothyroidism on amino acids in developing rat brain, J.Neurochem, 13:1017–1025 (1966).

    Article  Google Scholar 

  71. A. Van Harreveld and M. Kooiman, Amino acid release from the cerebral cortex during spreading depression and asphyxiation, J.Neurochem. 12:431–439 (1965).

    Article  Google Scholar 

  72. R. M. C. Dawson, Cerebral amino acids in fluoroacetate-poisoned, anaesthetised and hypoglycaemic rats, Biochim. Biophys. Acta 11:548–552 (1963).

    Article  Google Scholar 

  73. H. S. Bachelard, M. K. Gaitonde, and R. Vrba, The effect of psychotropic drugs on the utilization of glucose carbon atoms in the brain, heart and liver of the rat, Biochem. Pharmacol. 15:1039–1043 (1966).

    Article  PubMed  CAS  Google Scholar 

  74. J. K. Tews and W. E. Stone, Effects of methionine sulfoximine on levels of free amino acids and related substances in brain, Biochem. Pharmacol. 13:543–545 (1964).

    Article  PubMed  CAS  Google Scholar 

  75. M. S. Gaevskaya, Biochemistry of the Brain During the Process of Dying and Resuscitation, Monograph, Consultants Bureau Translation, New York (1963).

    Google Scholar 

  76. J. N. Williams, Jr., P. E. Schurr, and C. A. Elvehjem, The influence of chilling and exercise on free amino acids in cat tissues, J.Biol. Chem. 182:55–59 (1950).

    CAS  Google Scholar 

  77. L. E. Holt, Jr., P. Gyorgi, E. L. Pratt, S. E. Snyderman, and W. M. Wallace, Protein and Amino Acid Requirements in Early Life New York University Press, New York (1960).

    Google Scholar 

  78. H. J. Almquist, in Protein and Amino Acid Nutrition (A. A. Albanese, ed.), pp. 349–380, Academic Press, New York (1959).

    Google Scholar 

  79. H. E. Clark, in New Methods of Nutritional Biochemistry (A. A. Albanese, ed.), Vol. 2, pp. 123–159, Academic Press, New York (1965).

    Google Scholar 

  80. A. E. Harper, in Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Vol. 2, pp. 87–134, Academic Press, New York (1964).

    Google Scholar 

  81. T. Addis, L. J. Poo, and W. Lew, The quantities of protein lost by the various organs and tissues of the body during a fast, J.Biol. Chem. 115:111–116 (1936).

    CAS  Google Scholar 

  82. T. Addis, L. J. Poo, and W. Lew, The rate of protein formation in the organs and tissues of the body I. After casein refeeding, J. Biol. Chem. 116:343–352 (1936).

    CAS  Google Scholar 

  83. T. Addis, D. D. Lee, W. Lew, and L. J. Poo, The protein content of the organs and tissues at different levels of protein consumption, J.Nutr. 19:199–205 (1940).

    CAS  Google Scholar 

  84. H. Waelsch and A. Lajtha, Protein metabolism in the nervous system, Physiol. Rev. 41:709–736(1961).

    PubMed  CAS  Google Scholar 

  85. A. Neuberger and F. F. Richards, in Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Vol. I, pp. 243–296, Academic Press, New York (1964).

    Google Scholar 

  86. N. Barzoni, M. Cafiero, S. Di Bella, E. De Mori, and M. A. Grillo, Effect of a protein deficient diet upon some enzymatic activities of the brain, lung and kidney of rats, Experientia 8:306–307 (1952).

    Article  Google Scholar 

  87. W. W. Wainio, J. B. Allison, L. T. Kremzner, E. Bernstein, and M. Aronoff, Enzymes in protein depletion, III—Enzymes of brain, kidney, skeletal muscle and spleen, J.Nutr. 67:197–204 (1959).

    PubMed  CAS  Google Scholar 

  88. P. Lehr and J. Gayet, Response of the cerebral cortex of the rat to prolonged protein depletion I—Tissue weight, nitrogen, deoxyribonucleic acid and proteins, J.Neurochem. 10:169–176 (1963).

    Article  PubMed  CAS  Google Scholar 

  89. W. C. Rose and S. H. Eppstein, The dietary indispensability of valine, J.Biol. Chem. 127:677–684(1939).

    CAS  Google Scholar 

  90. W. C. Rose, R. L. Wixom, H. B. Lockhart, and G. F. Lambert, The amino acid requirements of man. XV. The valine requirement; summary and final observations, J.Biol. Chem. 217:987–995 (1955).

    PubMed  CAS  Google Scholar 

  91. R. Rajalakshmi, K. R. Govindarajan, and C. V. Ramakrishnan, Effect of dietary protein content on visual discrimination, learning and brain biochemistry in the albino rat, J.Neurochem. 12:261–271 (1965).

    Article  PubMed  CAS  Google Scholar 

  92. H. H. Beriet, in Progress in Brain Research (W. A. Himwich and J. P. Schade, eds.), Vol. 16, pp. 184–215, American Elsevier, New York (1965).

    Google Scholar 

  93. F. Viteri, M. Behar, and G. Arrozone, in Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Vol. II, pp. 523–568, Academic Press, New York (1964).

    Google Scholar 

  94. B. S. Platt, C. R. C. Heard, and R. J. C. Stewart, in Mammalian Protein Metabolism (H. N. Munro and J. B. Allison, eds.), Vol. II, pp. 445–521, Academic Press, New York (1964).

    Google Scholar 

  95. B. S. Platt, in Chemical Pathology of the Nervous System (J. Folch-Pi, ed.), pp. 114–118, Pergamon Press, New York (1961).

    Google Scholar 

  96. H. T. Thompson, P. E. Schurr, L. M. Henderson, and C. A. Elvehjem, The influence of fasting and nitrogen deprivation on the concentration of free amino acids in rat tissues, J. Biol. Chem. 182:47–53 (1950).

    CAS  Google Scholar 

  97. A. E. Denton, J. N. Williams, Jr., and C. A. Elvehjem, The influence of methionine deficiency on amino acid metabolism in the rat, J. Biol. Chem. 186:377–385 (1950).

    PubMed  CAS  Google Scholar 

  98. P. Mandel and J. Mark, The influence of nitrogen deprivation on free amino acids in rat brain, J.Neurochem. 12:987–992 (1965).

    Article  PubMed  CAS  Google Scholar 

  99. P. Lehr and J. Gayet, Response of the cerebral cortex of the rat to prolonged protein depletion II. Free aspartic, glutamic and γ-aminobutyric acids, J.Neurochem. 13:805–810(1966).

    Article  PubMed  CAS  Google Scholar 

  100. S. S. Kety, in Ultrastructure and Metabolism of the Nervous System (S. R. Korey, A. Pope, and E. Robins, eds.), pp. 311–324, Williams & Wilkins, Baltimore (1962).

    Google Scholar 

  101. M. J. Carver, Influence of phenylalanine administration on the free amino acids of brain and liver in the rat, J.Neurochem. 12:45–50 (1965).

    Article  PubMed  CAS  Google Scholar 

  102. M. J. Carver, J. H. Copenhaver, and R. A. Serpan, Free amino acids in foetal rat brain, Influence of L-phenylalanine, J. Neurochem. 12:857–861 (1965).

    Article  PubMed  CAS  Google Scholar 

  103. S. Roberts, Regulation of cerebral metabolism of amino acids-II. Influence of phenylalanine deficiency on free and protein-bound amino acids in rat cerebral cortex: Relationship to plasma levels, J.Neurochem. 10:931–940 (1963).

    Article  PubMed  CAS  Google Scholar 

  104. S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids-IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo, J. Neurochem. 12:373–387 (1965).

    Article  PubMed  CAS  Google Scholar 

  105. H. M. Sinclair, Vitamins and the nervous system, Brit. Med. Bull. 12:18–23 (1956).

    PubMed  CAS  Google Scholar 

  106. H. M. Sinclair, in Chemical Pathology of the Nervous System (J. Folch-Pi, ed.), pp. 98–113, Pergamon Press, New York (1961).

    Google Scholar 

  107. J. K. Tews and R. A. Lovell, The effect of a nutritional pyridoxine deficiency on free amino acids and related substances in mouse brain, J.Neurochem. 14:1–7 (1967).

    Article  PubMed  CAS  Google Scholar 

  108. D. B. Hope, Cystathionine in brain and liver from pyridoxine-deficient rats, J. Physiol. 141:31P–32P (1958).

    Google Scholar 

  109. A. A. Albanese, in Protein and Amino Acid Nutrition (A. A. Albanese, ed.), pp. 1–9, Academic Press, New York (1950).

    Google Scholar 

  110. Cold Spring Harbor Symposium of Quantitative Biology, Cellular Regulatory Mechanisms, Vol. 26, The Biological Laboratory, Cold Spring Harbor, Long Island, New York (1961).

    Google Scholar 

  111. W. C. Rose, The nutritive significance of the amino acids, Physiol. Rev. 18:109–136 (1938).

    Google Scholar 

  112. M. E. Rafelson, Jr., R. J. Winzler, and H. E. Pearson, A virus effect on the uptake of C14 from glucose in vitro by amino acids in mouse brain, J.Biol. Chem. 193:205–217 (1951).

    PubMed  CAS  Google Scholar 

  113. R. J. Winzler, K. Moldave, M. E. Rafelson, Jr., and H. E. Pearson, Conversion of glucose to amino acids by brain and liver of the new-born mouse, J.Biol. Chem. 199:485–492(1952).

    PubMed  CAS  Google Scholar 

  114. K. Moldave, M. E. Rafelson, Jr., D. Lagerborg, H. E. Pearson, and R. J. Winzler, In vitro conversion of radioglucose to free and protein-bound amino acids by virus-infected mouse brain, Arch. Biochem. Biophys. 50:383–391 (1954).

    Article  PubMed  CAS  Google Scholar 

  115. H. H. Sky-Peck, C. Rosenbloom, and R. J. Winzler, Incorporation of glucose into the protein-bound amino acids of one-day-old mouse brain in vitro, J. Neurochem. 13:223–228 (1966).

    Article  PubMed  CAS  Google Scholar 

  116. L. B. Flexner, J. B. Flexner, and R. B. Roberts, Biochemical and physiological differentiation during morphogenesis-XXII, Observations on amino acid and protein synthesis in the cerebral cortex and liver of the newborn mouse, J.Cellular Comp. Physiol. 51:385–403 (1958).

    Article  CAS  Google Scholar 

  117. R. B. Roberts, J. B. Flexner, and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis-XXIII, Further observations relating to the synthesis of amino acids and proteins by the cerebral cortex and liver of mouse, J.Neurochem. 4:78–90 (1959).

    Article  PubMed  CAS  Google Scholar 

  118. J. Lindsay and H. S. Bachelard, Incorporation of 14C from glucose into α-keto acids and amino acids in rat brain and liver in vivo, Biochem. Pharmacol. 15:1045–1052 (1966).

    Article  PubMed  CAS  Google Scholar 

  119. R. Vrba, M. K. Gaitonde, and D. Richter, The conversion of glucose carbon into protein in the brain and other organs of the rat, J.Neurochem. 9:465–475 (1962).

    Article  PubMed  CAS  Google Scholar 

  120. R. M. O’Neal and R. E. Koeppe, Precursors in vivo of glutamate, aspartate and their derivatives of rat brain, J. Neurochem. 13:835–847 (1966).

    Article  PubMed  Google Scholar 

  121. E. V. Flock, G. M. Tyce, and C. A. Owens, Jr., Utilizations of [U14C] glucose in brain after total hepatectomy in the rat, J.Neurochem. 13:1389–1406 (1966).

    Article  PubMed  CAS  Google Scholar 

  122. M. K. Gaitonde, S. A. Marchi, and D. Richter, The utilization of glucose in the brain and other organs of the cat, Proc. Roy. Soc. (London) Ser. B 160:124–136 (1964).

    Article  CAS  Google Scholar 

  123. R. M. O’Neal, R. E. Koeppe, and E. I. Williams, Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids, Biochem. J. 101:591–597(1966).

    PubMed  Google Scholar 

  124. S. S. Barkulis, A. Geiger, Y. Kawakita, and V. Aguilar, A study on the incorporation of 14C derived from glucose into the free amino acids of the brain cortex, J. Neurochem. 5:339–348 (1960).

    Article  PubMed  CAS  Google Scholar 

  125. H. Busch, Studies on the metabolism of pyruvate-2-C14 in tumor-bearing rats, Cancer Res. 15:365–374 (1955).

    PubMed  CAS  Google Scholar 

  126. A. Beloff-Chain, R. Catanzaro, E. B. Chain, I. Masi, and F. Pocchiari, Fate of uniformly labeled 14C glucose in brain slices, Proc. Roy. Soc. (London) Ser. B 144: 22–28 (1955).

    Article  CAS  Google Scholar 

  127. H. Busch, M. H. Goldberg, and D. C. Anderson, Substrate effects on metabolic patterns of pyruvate 2-C14 in tissue slices, Cancer Res. 16:175–181 (1956).

    PubMed  CAS  Google Scholar 

  128. Y. Tsukada, Y. Nagata, S. Hirano, and G. Takagaki, Glucose metabolism and amino acid in brain slices, J.Biochem. (Tokyo) 45:979–984 (1958).

    CAS  Google Scholar 

  129. A. Beloff-Chain, R. Catanzaro, E. B. Chain, L. Longinatti, I. Masi, and F. Pocchiari, The influence of glucose on acetate, alanine and pyruvate metabolism in rat cerebral cortical slices, Proc. Roy. Soc. (London) Ser. B 156:168–171 (1962).

    Article  CAS  Google Scholar 

  130. O. Gonda and J. H. Quastel, Transport and metabolism of acetate in rat brain cortex in vitro, Biochem. J. 100:83–94 (1966).

    PubMed  CAS  Google Scholar 

  131. Y. Nagata, Y. Yokoi, and Y. Tsukada, Studies on free amino acid metabolism in excised cervical ganglia from the rat, J.Neurochem. 13:1421–1431 (1966).

    Article  PubMed  CAS  Google Scholar 

  132. O. Z. Sellinger, R. Catanzaro, E. B. Chain, and F. Pocchiari, The metabolism of glutamate and aspartate in rat cerebral cortical slices, Proc. Roy. Soc. (London) Ser. B 156:148–162(1962).

    Article  CAS  Google Scholar 

  133. P. P. Cohen and G. L. Hekkus, Rate of transamination in normal tissues, J.Biol. Chem. 140:711–724(1941).

    CAS  Google Scholar 

  134. H. A. Krebs and D. Bellamy, The interconversion of glutamic acid and aspartic acid in respiring tissues, Biochem. J. 75:523–529 (1960).

    PubMed  CAS  Google Scholar 

  135. R. Balázs and R. J. Haslam, Exchange transamination and the metabolism of glutamate in brain, Biochem. J. 94:131–141 (1965).

    PubMed  Google Scholar 

  136. R. J. Haslam and H. A. Krebs, The metabolism of glutamate in homogenates and slices of brain cortex, Biochem. J. 88:566–578 (1963).

    PubMed  CAS  Google Scholar 

  137. R. W. Albers and W. B. Jakoby in Inhibition in the Central Nervous System and γ-Aminobutyric Acid (E. Roberts, ed.), PP 468–470, Pergamon Press, London (1960).

    Google Scholar 

  138. P. Borst and E. C. Slater, The oxidation of glutamate by rat-heart sarcosomes, Biochim. Biophys. Acta. 41:170–171 (1960).

    Article  PubMed  CAS  Google Scholar 

  139. M. Ruščak and E. Macejová, Formation of L-α alanine and γ-aminobutyric acid in rat cortical slices in relation to the substrate and pH of the medium, Physiol. Bohemslov. 14:266–275 (1965).

    Google Scholar 

  140. W. F. Bridger, The biosynthesis of serine in mouse brain extracts, J.Biol. Chem. 240:4591–4597(1965).

    Google Scholar 

  141. D. A. Walsh and H. J. Sallach, Comparative studies on the pathways for serine biosynthesis in animal tissues, J.Biol. Chem. 241:4068–4076 (1966).

    PubMed  CAS  Google Scholar 

  142. M. B. Sporn, W. Dingman, and A. De Falco, A method for studying metabolic pathways in the brain of the intact animal, the conversion of proline to other amino acids, J.Neurochem. 4:141–147 (1959).

    Article  PubMed  CAS  Google Scholar 

  143. R. Balázs, Control of glutamate metabolism. The effect of pyruvate, J.Neurochem. 12:63–76(1965).

    Article  PubMed  Google Scholar 

  144. J. E. Cremer, Amino acid metabolism in rat brain studied with 14C-labeled glucose, J.Neurochem. 11:165–185 (1964).

    Article  PubMed  CAS  Google Scholar 

  145. R. S. De Ropp and E. H. Snedeker, Effect of drugs on amino acid levels in the rat brain: Hypoglycemic agents, J.Neurochem. 7:128–134 (1961).

    Article  Google Scholar 

  146. H. S. Bachelard and J. R. Lindsay, Effects of neurotropic drugs on glucose metabolism in vivo, Biochem. Pharmacol. 15:1053–1058 (1966).

    Article  PubMed  CAS  Google Scholar 

  147. B. Sacktor, J. E. Wilson, and C. G. Tiekert, Regulation of glycolysis in brain, in situ, during convulsions, J.Biol. Chem. 241:5071–5075 (1966).

    PubMed  CAS  Google Scholar 

  148. S. Berl, G. Takagaki, D. D. Clarke and H. Waelsch, Carbon dioxide fixation in the brain, J.Biol. Chem. 237:2570–2573 (1962).

    PubMed  CAS  Google Scholar 

  149. L. J. Côté, Sze-Chuh Cheng, and H. Waelsch, CO2 fixation in the nervous system— II. Environment effects on CO2 fixation in lobster nerve, J.Neurochem. 13:281–287 (1966).

    Article  Google Scholar 

  150. O. Z. Sellinger, D. L. Rucker, and F. De Balbian Verster, Cerebral lysosomes—I. A comparative study of lysosomal N-acetyl-β-D-glucosaminidase and mitochondrial aspartic transaminase of rat cerebral cortex, J.Neurochem. 11:271–280 (1964).

    Article  PubMed  CAS  Google Scholar 

  151. L. Salganicoff and E. De Robertis, Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain, J.Neurochem. 12:287–309 (1965).

    Article  PubMed  CAS  Google Scholar 

  152. O. Z. Sellinger and D. L. Rucker, Latency and solubilization of the mitochondrial aspartate transaminase of rat cerebral cortex, Biochim. Biophys. Acta 67:504–507 (1963).

    Article  PubMed  CAS  Google Scholar 

  153. H. Wada and Y. Morino, in Vitamins and Hormones (R. S. Harris, I. G. Wool, and J. A. Loraine, eds.), Vol. 22, pp. 411–444, Academic Press, New York (1964).

    Google Scholar 

  154. O. Bodansky, M. K. Schwartz, and J. S. Nisselbaum, in Advances in Enzyme Regulation (G. Weber, ed.), Vol. 4, pp. 229–315, Pergamon Press, New York (1965).

    Google Scholar 

  155. A. Meister, in The Enzymes (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 6, pp. 193–217, Academic Press, New York (1962).

    Google Scholar 

  156. S. F. Velick and J. Vavra, in The Enzymes (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol, 6, pp. 219–247, Academic Press, New York (1962).

    Google Scholar 

  157. C. E. Frohman, J. M. Orten, and A. H. Smith, Chromatographic determination of the acids of the citric acid cycle in tissues, J.Biol. Chem. 193:277–283 (1951).

    PubMed  CAS  Google Scholar 

  158. J. M. Ravel, S. J. Norton, J. S. Humphreys, and W. Shive, Asparagine biosynthesis in Lactobacillus arabinosus and its control by asparagine through enzyme inhibition and repression, J.Biol. Chem. 237:2845–2849 (1962).

    PubMed  CAS  Google Scholar 

  159. L. Levintow, Evidence that glutamine is a precursor of asparagine in a human cell in tissue culture, Science 126:611–612 (1957).

    Article  PubMed  CAS  Google Scholar 

  160. S. M. Arfin, Asparagine synthesis in the chick embryo liver, Biochim. Biophys. Acta 136:233–244 (1967).

    Article  PubMed  CAS  Google Scholar 

  161. R. W. Swick, P. L. Barnstein, and J. L. Stange, The metabolism of mitochondrial proteins I. Distribution and characterization of the isozymes of alanine aminotransferase in rat liver, J.Biol. Chem. 240:3334–3340 (1965).

    PubMed  CAS  Google Scholar 

  162. N. Katunuma, K. Mikumo, M. Matsuda, and M. Okada, Differences between the transaminases in mitochondria and soluble fraction I. Glutamic-pyruvic transaminase, J.Vitaminol. 8:68–73 (1962).

    Article  CAS  Google Scholar 

  163. H. L. Segal, D. S. Beattie, and S. Hopper, Purification and properties of liver glutamic-alanine transaminase from normal and corticoid-treated rats, J.Biol. Chem. 237:1914–1920 (1962).

    CAS  Google Scholar 

  164. H. J. Vogel and B. D. Davis, Glutamic-γ-semialdehyde and Δ1-pyrroline-5-car-boxylic acid, intermediates in the biosynthesis of proline, J.Am. Chem. Soc. 74: 109–112(1952).

    Article  CAS  Google Scholar 

  165. H. J. Strecker, The interconversion of glutamic acid and proline I. The formation of Δ1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli, J.Biol. Chem. 225:825–834 (1957).

    PubMed  CAS  Google Scholar 

  166. M. R. Stetten, in Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 277–290, The Johns Hopkins Press, Baltimore (1955).

    Google Scholar 

  167. H. J. Vogel, in Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 335–346. The Johns Hopkins Press, Baltimore (1955).

    Google Scholar 

  168. J. Peisach and H. J. Strecker, The interconversion of glutamic acid and proline V. The reduction of Δ1-pyrroline-5-carboxylic acid to proline, J.Biol. Chem. 237: 2255–2260 (1962).

    PubMed  CAS  Google Scholar 

  169. H. J. Strecker and E. E. Eliasson, Ornithine-δ-Transaminase activity during the growth cycle of Chang’s liver cells, J.Biol. Chem. 241:5750–5756 (1966).

    PubMed  CAS  Google Scholar 

  170. S. Ratner, H. Morell, and E. Corvalho, Enzymes of arginine metabolism in brain, Arch. Biochem. Biophys. 91:280–289 (1960).

    Article  PubMed  CAS  Google Scholar 

  171. H. C. Buniatian and M. A. Davtian, Urea synthesis in brain, J.Neurochem. 13: 743–753 (1966).

    Article  PubMed  CAS  Google Scholar 

  172. C. Peraino and H. C. Pitot, Ornithine-S-transaminase in the rat, I. Assay and some general properties, Biochim. Biophys. Acta 73:222–231 (1963).

    Article  CAS  Google Scholar 

  173. J. D. Ogle, R. B. Arlinghaus, and M. A. Logan, 3-Hydroxyproline, a new amino acid of collagen, J.Biol. Chem. 237:3667–3673 (1962).

    PubMed  CAS  Google Scholar 

  174. M. L. Efron, E. M. Bixby, and C. V. Pryles, Hydroxyprolinemia, New Engl. J. Med. 272:1299–1308 (1965).

    Article  PubMed  CAS  Google Scholar 

  175. L. N. Lukens, The size of the polypeptide precursor of collagen hydroxyproline, Proc. Natl. Acad. Sci. U.S. 55:1235–1243 (1966).

    Article  CAS  Google Scholar 

  176. K. I. Kivirikko and D. J. Prockop, Purification and partial characterization of the enzyme for the hydroxylation of proline in protocollagen, Arch. Biochem. Biophys. 118:611–618(1967).

    Article  CAS  Google Scholar 

  177. K. Kuratomi and K. Fukunaga, The metabolism of γ-hydroxyglutamate in rat liver I. Enzymic synthesis of γ-hydroxy-α-ketoglutarate from pyruvate and glyoxa-late, Biochim. Biophys. Acta 78:617–628 (1963).

    Article  PubMed  CAS  Google Scholar 

  178. K. Kuratomi, K. Fukunaga, and Y. Kobayashi, The metabolism of y-hydroxy-glutamate in rat liver II. A transaminase concerned in γ-hydroxyglutamate metabolism, Biochim. Biophys. Acta 78:629–639 (1963).

    Article  PubMed  CAS  Google Scholar 

  179. A. Goldstone and E. Adams, Further metabolic reactions of γ -hydroxyglutamate. Amidation to γ -hydroxyglutamine; possible reduction to hydroxyproline, Biochem. Biophys. Res. Commun. 16:71–76 (1964).

    Article  PubMed  CAS  Google Scholar 

  180. H. J. Strecker, The interconversion of glutamic acid and proline II. The preparation and properties of Δ1-pyrroline-5-carboxylicacid, J.Biol. Chem. 235:2045–2050(1960).

    PubMed  CAS  Google Scholar 

  181. A. B. Johnson and H. J. Strecker, The interconversion of glutamic acid and proline IV. The oxidation of proline by rat liver mitochondria, J.Biol. Chem. 237:1876–1882(1962).

    PubMed  CAS  Google Scholar 

  182. M. L. Efron, Familial hyperprolinemia, New Engl. J. Med. 272: 1243–1254(1965).

    Article  PubMed  CAS  Google Scholar 

  183. H. Tabor and C. W. Tabor, Spermidine, spermine and related amines, Pharmacol. Rev. 16:245–300(1964).

    PubMed  CAS  Google Scholar 

  184. H. A. Krebs, Metabolism of amino acids—III. Deamination of amino acids, Biochem. J. 29:1620–1644 (1935).

    PubMed  CAS  Google Scholar 

  185. F. Bernheim and M. L. C. Bernheim, The purification of the enzymes which oxidize certain amino acids, J.Biol. Chem. 109:131–140 (1935).

    CAS  Google Scholar 

  186. A. E. Braunstein and R. M. Asarkh, The mode of deamination of L-amino acids in surviving tissues, J.Biol. Chem. 157:421–422 (1945).

    Google Scholar 

  187. H. A. Krebs, in The Enzymes (J. B. Sumner and K. Myrbäck, eds.), Vol. 2, pp. 499–535, Academic Press, New York (1951).

    Google Scholar 

  188. A. Meister and D. Wellner, in The Enzymes (P. D. Boyer, H. Lardy, and K. Myrbäck eds.), Vol. 7, pp. 609–648, Academic Press, New York (1963).

    Google Scholar 

  189. P. Boulanger and R. Osteux, Action de la L-aminoacide-déshydrogénase du foie de dindon (Meleagris gallopavo L.) sur les acides amines basiques, Biochim. Biophys. Acta 21:552–561 (1956).

    Article  PubMed  CAS  Google Scholar 

  190. M. Nakano and T. S. Danowski, Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria, J.Biol. Chem. 241:2075–2083 (1966).

    PubMed  CAS  Google Scholar 

  191. A. E. Braunstein, in Advances in Enzymology (F. F. Nord, ed.), Vol. 19, pp. 335–389, Interscience, New York (1957).

    Google Scholar 

  192. K. H. Bässler and C. H. Hammar, Aminosäurestoffwechsel in Zellfraktionen der Rattenleber Transaminieriengen und Oxydation von l-Aminosäuren, Biochem. Z. 330:550–564(1968).

    Google Scholar 

  193. F. J. R. Hird and D. J. Morton, The oxidation of L-amino acids by mitochondria from rat liver, Biochim. Biophys. Acta 38:222–229 (1960).

    Article  PubMed  CAS  Google Scholar 

  194. H. Weil-Malherbe, Studies on brain metabolism I. The metabolism of glutamic acid in brain, Biochem. J. 30:665–676 (1936).

    PubMed  CAS  Google Scholar 

  195. S. Edlbacher and O. Wiss, Zur Kenntnis des Abbaues der Aminosäuren im tiereschen Organismus, 3. Über den oxydativen Abbau der Aminosäuren im Gehirn, Helv. Chim. Acta 27:1060–1073 (1944).

    Article  CAS  Google Scholar 

  196. S. Edlbacher and O. Wiss, Zur Kenntnis des Abbaues der Aminosäuren im tiereschen Organismus, 4. Über den oxydativen Abbau der Aminosäuren im Gehirn, Helv. Chim. Acta 27:1824–1831 (1944).

    Article  CAS  Google Scholar 

  197. F. Friedberg, On the dissimilation of DL-alanine-1-C14 by rat brain homogenates, Biochim. Biophys. Acta 11:308–309 (1953).

    Article  PubMed  CAS  Google Scholar 

  198. L. C. Leeper, V. J. Tulane, and F. Friedberg, Metabolism of glycine-1-C14 and glycine-2-C14 in rat brain homogenates, J.Biol. Chem. 203:513–517 (1953).

    PubMed  CAS  Google Scholar 

  199. B. Shepartz, Oxidation of L-amino acids in homogenates of immature brain, Biochim. Biophys. Acta 53:602–603 (1961).

    Article  Google Scholar 

  200. G. G. Shamkulashvili, Oxidative metabolism of aspartic acid in brain slices, Soobshch. Akad. Nauk. Gruz. SSR 42:105–110 (1966).

    CAS  Google Scholar 

  201. J. N. Potanos, A. D. Friedman, and S. Graff, Some aspects of tricarboxylic acid metabolism in the central nervous system, Neurology 10:213–216 (1960).

    Article  PubMed  CAS  Google Scholar 

  202. G. Simon, J. B. Drori, and M. M. Cohen, Mechanism of conversion of aspartate into glutamate in cerebral-cortex slices, Biochem. J. 102:153–162 (1967).

    PubMed  CAS  Google Scholar 

  203. K. F. Swaimann and J. M. Milstein, Oxidative decarboxylation of aspartate, alanine and glycine in developing rabbit brain, Biochim. Biophys. Acta 93:64–70 (1964).

    Article  Google Scholar 

  204. F. Salvatore, V. Zappia, and C. Costa, Comparative biochemistry of deamination of L-amino acids in elasmobranch and teleost fish, Comp. Biochem. Physiol. 16:303–309 (1965).

    Article  PubMed  CAS  Google Scholar 

  205. M. Hori, d-Amino acid oxidase in the brain of the dog, Seishin Shinkeigaku Zasshi 67:548–553 (1965).

    PubMed  CAS  Google Scholar 

  206. A. H. Neims, W. D. Zieverink, and J. D. Smilack, Distribution of D-amino acid oxidase in bovine and human nervous tissues, J.Neurochem. 13:163–168 (1966).

    Article  PubMed  CAS  Google Scholar 

  207. D. B. Goldstein, d-Amino acid oxidase in brain: Distribution in several species and inhibition by pentobarbitone, J.Neurochem. 13:1011–1016 (1966).

    Article  PubMed  CAS  Google Scholar 

  208. S. Ratner, in The Enzymes (P. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 6, pp. 495–513, Academic Press, New York (1962).

    Google Scholar 

  209. P. A. Komitiani, Amino acid metabolism in homogenates of muscular and nervous tissue in connection with adenylic acid reamination, Biokhimiya 24:729–737 (1959).

    Google Scholar 

  210. Y. P. Lee, in The Enzymes (P. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 4, pp. 279–283, Academic Press, New York (1962).

    Google Scholar 

  211. M. K. Malysheva, Purification and study of some properties of the adenylic acid deaminase of brain, Ukr. Biokhim. Zh. 37:370–378 (1965).

    PubMed  CAS  Google Scholar 

  212. H. Mcllwain, Biochemistry and the Nervous System, Little Brown, Boston (1964).

    Google Scholar 

  213. W. Wells, D. Gaines, and H. Koenig, Studies of pyrimidine nucleotide metabolism in the central nervous system-I. Metabolic effects and metabolism of 6-azauridine, J.Neurochem. 10:709–723 (1963).

    Article  PubMed  CAS  Google Scholar 

  214. J. Abelskov, Succinyl adenosine, a new substance in the human cerebrospinal fluid, Biochim. Biophys. Acta 32:566 (1959).

    Article  PubMed  CAS  Google Scholar 

  215. J. M. Lowenstein and P. P. Cohen, Studies on the biosynthesis of carbamyl aspartic acid, J.Biol Chem. 220:57–70 (1956).

    PubMed  CAS  Google Scholar 

  216. E. Valovicova, J. Rajcani, T. Tursky, and M. Brozman, Asparaginase in experimental allergic encephalomyelitis, Z. Ges. Exptl. Med. 140:256–267 (1966).

    Article  CAS  Google Scholar 

  217. L. I. Miloslavskaia, The effect of barbiturates on the activity of cerebral asparaginase and glutaminase, Biokhimiya 23:347–350 (1958).

    CAS  Google Scholar 

  218. H. M. Suld and P. A. Herbut, Guinea pig serum and liver asparaginases, purification and antitumor activity, J.Biol. Chem. 240:2234–2241 (1965).

    PubMed  CAS  Google Scholar 

  219. A. E. Braunstein and H. T. Seng, The scope of amino donor specificity of glutamine transaminase and asparagine transaminase, Biochim. Biophys. Acta 44:187–189 (1960).

    Article  Google Scholar 

  220. D. Greenberg, in Annual Reviews of Biochemistry (E. E. Snell, J. M. Luck, P. D. Boyer, and G. MacKinney, eds.), Vol. 33, pp. 633–666, Annual Reviews, Palo Alto, California (1964).

    Google Scholar 

  221. K. Moldave, R. J. Winzler, and H. E. Pearson, The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain, J.Biol. Chem. 200: 357–365 (1953).

    PubMed  CAS  Google Scholar 

  222. H. H. Sky-Peck, H. E. Pearson, and D. W. Visser, Incorporation of glucose-U-C14, glucose-1-C14 and glucose-6-C14 in vitro into the protein-bound amino acids of one day-old mouse brain, J. Biol. Chem. 223:1033–1041 (1956).

    PubMed  CAS  Google Scholar 

  223. A. S. M. Selim and D. M. Greenberg, An enzyme that synthesizes cystathionine and deaminates L-serine, J.Biol. Chem. 234:1474–1480 (1959).

    PubMed  CAS  Google Scholar 

  224. A. Nagabhushanam and D. M. Greenberg, Isolation and properties of a homogeneous preparation of cystathionine synthetase-L-serine and L-threonine dehydratase, J.Biol Chem. 240:3002–3008 (1965).

    PubMed  CAS  Google Scholar 

  225. M. Suda, in Advances in Enzyme Regulation (G. Weber, ed.), Vol. 5, pp. 181–209, Pergamon Press, New York (1967).

    Google Scholar 

  226. F. W. Sayre and D. M. Greenberg, Purification and properties of serine and threonine dehydrases, J.Biol. Chem. 220:787–799 (1956).

    PubMed  CAS  Google Scholar 

  227. S. H. Mudd, J. D. Finkelstein, F. Irreverre, and L. Laster, Threonine dehydratase activity in humans lacking cystathionine synthetase, Biochem. Biophys Res. Commun. 19:665–670(1965).

    Article  PubMed  CAS  Google Scholar 

  228. F. Salvatore, V. Zappia, and R. Cortese, Studies on the deaminationof L-amino acids in mammalian tissues, Enzymologia 31:113–127 (1966).

    PubMed  CAS  Google Scholar 

  229. J. S. Nishimura and D. M. Greenberg, Purification and properties of L-threonine dehydrase of sheep liver, J.Biol. Chem. 236:2684–2691 (1961).

    PubMed  CAS  Google Scholar 

  230. A. E. Braunstein and G. Ya. Vilenkina, Enzymic formation of glycine from serine, threonine and other hydroxy-amino acids in animal tissue, Dokl. Akad. Nauk SSSR 66:243–246(1949).

    Google Scholar 

  231. S. C. Lin and D. M. Greenberg, Enzymatic breakdown of threonine by threonine aldolase, J.Gen. Physiol. 38:181–196 (1954).

    Article  PubMed  CAS  Google Scholar 

  232. T. N. Prutasova, Paths of enzymic breakdown and regulation of metabolism of threonine stereoisomers in rat liver, Biokhimiya 30:836–843 (1965).

    Google Scholar 

  233. G. Urata and S. Granick, Biosynthesis of α-aminoketones and the metabolism of aminoacetone, J.Biol. Chem. 238:811–820 (1963).

    PubMed  CAS  Google Scholar 

  234. D. Hartshorne and D. M. Greenberg, Studies on liver threonine dehydrogenase, Arch. Biochem. Biophys. 105:173–178 (1964).

    Article  PubMed  CAS  Google Scholar 

  235. M. L. Green and W. H. Elliot, The enzymic formation of aminoacetone from threonine and its further metabolism, Biochem. J. 92:537–549 (1964).

    PubMed  CAS  Google Scholar 

  236. H. J. Strecker, The interconversion of glutamic acid and proline III. Δ1-Pyrroline-5-carboxylic acid dehydrogenase, J.Biol. Chem. 235:3218–3223 (1960).

    CAS  Google Scholar 

  237. E. Adams and A. Goldstone, Hydroxyproline metabolism II. Enzymatic preparation and properties of Δ1-pyrroline-3-hydroxy-5-carboxylic acid, J.Biol. Chem. 236: 3492–3498 (1960).

    Google Scholar 

  238. J. V. Taggart and R. B. Krakaur, Studies on the cyclophorase system V. The oxidation of proline and hydroxyproline, J.Biol. Chem. 177:641–653 (1949).

    PubMed  CAS  Google Scholar 

  239. E. Adams and A. Goldstone, Hydroxyproline metabolism IV. Enzymatic synthesis of y-hydroxyglutamate from Δ1-pyrroline-3-hydroxy-5-carboxylate, J.Biol. Chem. 235:3504–3512(1960).

    PubMed  CAS  Google Scholar 

  240. L. P. Bouthillier and Y. Binette, Decarboxylation of y-hydroxyglutamate to α-hydroxy-y-aminobutyrate in rat brain, Can. J. Biochem. Physiol. 39:1930–1932 (1961).

    Article  PubMed  CAS  Google Scholar 

  241. L. P. Bouthillier, J. J. Pushpathadam, and Y. Binette, Study of the metabolism of 2-hydroxy-4-aminobutyric acid, a product of y-hydroxyglutamic acid decarboxylation, Can. J. Biochem. Physiol. 44:171–177 (1966).

    Article  CAS  Google Scholar 

  242. E. F. Dekker and U. Maitra, Conversion of y-hydroxyglutamate to glyoxalate and alanine; Purification and properties of the enzyme system, J.Biol. Chem. 237:2218–2227 (1962).

    PubMed  CAS  Google Scholar 

  243. L. P. Bouthillier, Y. Binette, and G. Pouliot, Transformation de l’acide γ-hydroxy-glutamique en alanine et en acide glyoxylique, Can. J. Biochem. Physiol. 39:1595–1603 (1961).

    Article  PubMed  CAS  Google Scholar 

  244. E. Baldwin, Dynamic Aspects of Biochemistry, Cambridge University Press, Cambridge, England (1963).

    Google Scholar 

  245. J. B. Walker, in Comparative Biochemistry of Arginine and Derivatives (G. E. W. Wolstenholme and M. P. Cameron, eds.), pp. 43–55, Little Brown, Boston (1965).

    Google Scholar 

  246. N. Van Thoai, in Comparative Biochemistry of Arginine and Derivatives (G. E. W. Wolstenholme and M. P. Cameron, eds.), pp. 3–13, Little Brown, Boston (1965).

    Google Scholar 

  247. J. J. Pisano, D. Abraham, and S. Udenfriend, Biosynthesis and disposition of γ -guanidinobutyric acid in mammalian tissues, Arch. Biochem. Biophys. 100:323–329 (1963).

    Article  CAS  Google Scholar 

  248. A. Ichihara and E. Koyama, Transaminase of branched chain amino acids I. Branched chain amino acids-α-ketoglutarate transaminase, J.Biochem. (Tokyo) 59:160–169 (1966).

    CAS  Google Scholar 

  249. R. T. Taylor and W. T. Jenkins, Leucine aminotransferase II. Purification and characterization, J.Biol. Chem. 241:4396–4405 (1966).

    PubMed  CAS  Google Scholar 

  250. A. Ichihara, H. Takahashi, K. Aki, and A. Shirai, Transaminase of branched chain amino acids II. Physiological change in enzyme activity in rat liver and kidney, Biochem. Biophys. Res. Commun. 26:674–678 (1967).

    Article  PubMed  CAS  Google Scholar 

  251. K. F. Swaiman and J. M. Milstein, Oxidation of Leucine, isoleucine and related ketoacids in developing rabbit brain, J.Neurochem. 12:981–986 (1965).

    Article  PubMed  CAS  Google Scholar 

  252. J. J. Kabara and G. T. Okita, Brain Cholesterol: Biosynthesis with selected precursors in vivo, J. Neurochem. 7:298–304 (1961).

    Article  PubMed  CAS  Google Scholar 

  253. S. Roberts, K. Seto, and B. H. Hanking, Regulation of cerebral metabolism of amino acids I. Influence of phenylalanine deficiency on oxidative utilization in vitro, J. Neurochem. 9:493–501 (1962).

    Article  PubMed  CAS  Google Scholar 

  254. H. Borsook, C. L. Deasy, A. J. Haagen-Smit, G. Keighley, and P. H. Lowy, The degradation of L-lysine in guinea pig liver homogenate: formation of a-aminoadipic acid, J.Biol. Chem. 176:1383–1394, 1395–1400 (1948).

    Google Scholar 

  255. M. Rothstein, K. E. Cooksey, and D. M. Greenberg, Metabolic conversion of pipecolic acid to a-aminoadipic acid, J.Biol. Chem. 237:2828–2830 (1962).

    PubMed  CAS  Google Scholar 

  256. K. Higashino, K. Tsukada, and I. Lieberman, Saccharopine, a product of lysine breakdown in mammalian liver, Biochem. Biophys. Res. Commun. 20:285–290 (1965).

    Article  PubMed  CAS  Google Scholar 

  257. H. P. Broquist and J. S. Trupin, in Annual Reviews of Biochemistry (J. M. Luck, P. D. Boyer, G. MacKinney, A Meister, and E. E. Snell, eds.), Vol. 35, pp. 231–274, Annual Reviews, Palo Alto, Calfornia (1965).

    Google Scholar 

  258. M. L. Efron, Aminoaciduria, New Engl. J. Med., 272: 1058–1065, (1965)

    Article  PubMed  CAS  Google Scholar 

  259. 258a. M. L. Efron, Aminoaciduria, New Engl. J. Med., 272: 1107–1113 (1965)

    Article  PubMed  CAS  Google Scholar 

  260. C. R. Scriver, S. Pruschel, and E. Davies, Hyper β -alaninemia associated with β-aminoaciduria and γ-aminoaciduria, somnolence and seizures, New Engl. J. Med. 274:635–643 (1966).

    Article  PubMed  CAS  Google Scholar 

  261. H. Ghadini, V. I. Binnington, and P. Pecora, Hyperlysinemia associated with retardation, New Engl. J. Med. 273:723–729 (1965).

    Article  Google Scholar 

  262. N. C. Woody, Hyperlysinemia, A.M.A. Am. J. Dis. Child. 108:543–553 (1965).

    Google Scholar 

  263. W. Burgi, R. Richterich, and J. P. Columbo, L-Lysine dehydrogenase deficiency in a patient with congenital lysine intolerance, Nature 211:854–855 (1966).

    Article  PubMed  CAS  Google Scholar 

  264. Y. Wada, Idiopathic hypervalinemia: Valine and α -keto acids in blood following an oral dose of valine, Tokuhu J. Exptl. Med. 87:322–331 (1965).

    Article  CAS  Google Scholar 

  265. H. A. Waisman, T. Gerritsen, D. F. Boggs, V. J. Polidora, and H. F. Harlow, Mental retardation in monkeys: II. Branched chain amino-aciduria and keto-aciduria, A.M.A. Am. J. Dis. Child. 104:488–490 (1962).

    Google Scholar 

  266. W. Cochrane, Idiopathic infantile hypoglycemia and leucine sensitivity, Metabolism 9:386–399 (1960).

    PubMed  CAS  Google Scholar 

  267. S. S. Fajans, J. C. Floyd, Jr., R. F. Knopf, and J. W. Conn, in Recent Progress in Hormone Research (G. Pincus, ed.) Vol. 23, pp. 617–656, Academic Press, New York (1967).

    Google Scholar 

  268. G. G. Duncan, Diseases of Metabolism, W. B. Saunders, Philadelphia (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Strecker, H.J. (1970). Biochemistry of Selected Amino Acids. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics