Skip to main content

Physiological Effects of Vasopressin on the Kidney

  • Chapter
Vasopressin

Abstract

In this chapter discussion will be limited to consideration of three facets of the actions of vasopressin (VP) on the kidney: (1) the several actions by which VP promotes the concentration of urine; (2) the influence of VP on renal hemodynamics; and (3) the effect of VP on the urinary excretion of sodium. The first topic has been chosen because there have been several exciting new developments in this area and the last two topics because they continue to be controversial. Much of this disagreement in the past about the actions of VP may have arisen from the use of impure preparations and unphysiologically high doses of the hormone. This review therefore stresses results obtained with physiological concentrations of synthetic VP or with several of its synthetic agonistic and antagonistic analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atherton, J. C., Green, R., and Thomas, S., 1971, Influence of lysine-vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat, J. Physiol. (Lond.) 213: 291–309.

    CAS  Google Scholar 

  • Bankir, L., Trinh, M. M., Bouby, N., and Doute, M., 1982, Functional consequences of ADH-induced thick ascending limb (TAL) hypertrophy in Brattleboro rats with diabetes insipidus (DI), in: Fifteenth Annual Meeting of the American Society of Nephrology, p. 156A (Abst.).

    Google Scholar 

  • Berliner, R. W., and Davidson, D. G., 1957, Production of hypertonic urine in the absence of pituitary antidiuretic hormone, J. Clin. Invest. 36: 1416–1427.

    Article  PubMed  CAS  Google Scholar 

  • Bouby, N. Bankir, L., Trinh-Trang-Tan, M.-M., Minuth, W. W., and Kriz, W. 1985, Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int. 28: 456–466.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D., Grosso, A., and DeSousa, R. C., 1983, Correlation between water flow and intramembrane particle aggregates in toad epidermis, Am. J. Physiol. 245(Cell Physiol. 14): C334–C342.

    PubMed  CAS  Google Scholar 

  • Brown, D., Shields, G. I., Valtin, H., Morris, J. F., and Orci, L., 1985, Lack of intramembranous particle clusters in collecting ducts of mice with nephrogenic diabetes insipidus. Am. J. Physiol. 249(Renal Fluid Electrolyte Physiol. 18): F582–F589.

    PubMed  CAS  Google Scholar 

  • Chevalier, J., Bourguet, J., and Hugon, J. S., 1974, Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment, Cell Tissue Res. 152: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, K. P., Gellai, M., North, W. G., and Valtin, H., 1986, Influence of oxytocin on renal hemo-dynamics and electrolyte and water excretion, Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F290–F296.

    PubMed  CAS  Google Scholar 

  • Davis, J. M., and Schnermann, J., 1971, The effect of antidiuretic hormone on the distribution of nephron nitration rates in rats with hereditary diabetes insipidus, Pflugers Arch. 330: 323–334.

    Article  PubMed  CAS  Google Scholar 

  • DeSousa, R. C., 1984, Cellular modes of action of vasopressin, in: Nephrology, Vol. I (R. R. Robinson, ed), pp. 407–416. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Edwards, B. R., Gellai, M., and Valtin, H., 1980, Concentration of urine in the absence of ADH with minimal or no decrease in GFR, Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F84–F91.

    PubMed  CAS  Google Scholar 

  • Edwards, B. R., and LaRochelle, F. T., Jr., 1984, Antidiuretic effect of endogenous oxytocin in dehydrated Brattleboro homozygous rats, Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 16): F453–465.

    Google Scholar 

  • Ernst, S. A., and Schreiber, J. H., 1981, Ultrastructural localization of Na+, K+-ATPase in rat and rabbit kidney medulla, J. Cell Biol. 91: 803–813.

    Article  PubMed  CAS  Google Scholar 

  • Gellai, M., 1985, Vasopressin antagonists in studies on the role of vasopressin in renal hemodynamics, in: Vasopressin (R. W. Schrier, ed.), pp. 167–170, Raven Press, New York.

    Google Scholar 

  • Gellai, M., and Valtin, H., 1979, Chronic vascular constrictions and measurements of renal function in conscious rats, Kidney Int. 15: 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Gellai, M., Bankir, L., and Grünfeld, J. P. (intr. by H. Valtin), 1983, Vasopressin and renal hemodynamics: vascular and tubular effects, in: Sixteenth Annual Meeting of the American Society of Nephrology, p. 150A (Abst.).

    Google Scholar 

  • Gellai, M., Silverstein, J. H., Hwang, J. C., LaRochelle, F. T., Jr., and Valtin, H., 1984, Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats, Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F819–F827.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J., and Burg, M. B., 1966, Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules, Am. J. Physiol. 211: 255–259.

    PubMed  CAS  Google Scholar 

  • Hall, D. A., and Varney, D. M., 1980, Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop, J. Clin. Invest. 66: 792–802.

    Article  PubMed  CAS  Google Scholar 

  • Harmanci, M. C., Kachadorian, W. A., Valtin, H., and DiScala, V. A., 1978, Antidiuretic hormone-induced intramembranous alterations in mammalian collecting ducts, Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F440–F443.

    CAS  Google Scholar 

  • Harmanci, M. C., Stern, P., Kachadorian, W. A., Valtin, H., and DiScala, V. A., 1980, Vasopressin and collecting duct intramembranous particle clusters: A dose-response relationship, Am. J. Physiol. 239 (Renal Fluid Electrolyte Physiol. 8): F560–564.

    PubMed  CAS  Google Scholar 

  • Hays, R. M., 1983, Alteration of luminal membrane structure by antidiuretic hormone, Am. J. Physiol. 245 (Cell Physiol. 14): C289–C296.

    PubMed  CAS  Google Scholar 

  • Hebert, S. C., Culpepper, R. M., and Andreoli, T. E., 1981, NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport, Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F412–F431.

    PubMed  CAS  Google Scholar 

  • Jaenike, J. R., 1961, The influence of vasopressin on the permeability of the mammalian collecting duct to urea, J. Clin. Invest. 40: 144–151.

    Article  PubMed  CAS  Google Scholar 

  • Jamison, R. L., and Kriz, W., 1982, Urinary Concentrating Mechanism: Structure and Function, Oxford University Press, New York.

    Google Scholar 

  • Jamison, R. L., Buerkert, J., and Lacy, F., 1972, A micropuncture study of Henle’s thin loop in Brattleboro rats, Am. J. Physiol. 224: 180–185.

    Google Scholar 

  • Kachadorian, W. A., Wade, J. B., and DiScala, V. A., 1975, Vasopressin: Induced structural change in toad bladder luminal membrane, Science 190: 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Wade, J. B., Uiterwyk, C. C., and DiScala, V. A., 1977a, Membrane structural and functional responses to vasopressin in toad bladder, J. Membr. Biol. 30: 381–401.

    PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Levine, S. D., Wade, J. B., DiScala, V. A., and Hays, R. M., 1977b, Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder, J. Clin. Invest. 59: 576–581.

    Article  PubMed  CAS  Google Scholar 

  • Knepper, M. A., and Burg, M. B., 1983, Organization of nephron function, Am. J. Physiol. 244(Renal Fluid Electrolyte Physiol. 13): F579–F589.

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen, V., and Ussing, H. H., 1953, The contributions of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin, Acta Physiol. Scand. 28: 60–76.

    Article  PubMed  CAS  Google Scholar 

  • Kokko, J., and Rector, F. C., Jr., 1972, Countercurrent multiplication system without active transport in inner medulla, Kidney Int. 2: 214–223.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, D. C., Quillen, E. W., Jr., Skelton, M. M., and Cowley, A. W., Jr., 1983, Dehydration natri-uresis in the salt-deplete dog—role of vasopressin and aldosterone, Fed. Proc. 42: 738.

    Google Scholar 

  • Morel, F., Imbert-Teboul, M., and Chabardes, D., 1981, Distribution of hormone-dependent adenyl-ate cyclase in the nephron and its physiological significance, Annu. Rev. Physiol. 43: 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, T., and Berliner, R. W., 1968, Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea and sodium, Am. J. Physiol. 215: 198–115.

    Google Scholar 

  • Muller, J., and Kachadorian, W. A., 1984, Aggregate-carrying membranes during ADH stimulation and washout in toad bladder, Am. J. Physiol. 241(Cell Physiol. 16): C90–C98.

    Google Scholar 

  • Sands, J. M., Nonoguchi, H., and Knepper, M. A., 1986, Effects of vasopressin, and atrial natriuretic factor on osmotic water permeability and urea permeability of rat inner medullary collecting duct segments, in: Nineteenth Annual Meeting of the American Society of Nephrology, p. 293A (Abst.).

    Google Scholar 

  • Sasaki, S., and Imai, M., 1980, Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle’s loop of mouse, rat and rabbit kidneys, Pflug-ers Arch. 383: 215–221.

    Article  CAS  Google Scholar 

  • Sawyer, W. H., 1951, Effect of posterior pituitary extract on permeability of frog skin to water, Am. J. Physiol. 164: 44–48.

    PubMed  CAS  Google Scholar 

  • Schafer, J. A., 1984, Mechanisms coupling the absorption of solutes and water in the proximal neph-ron, Kidney Int. 25: 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, J. A., Imai, M., Greger, R., and Stokes, J. III, 1984, Transport mechanisms in the loop of Henle, in: Ninth International Congress of Nephrology, p. 22A (Abst.).

    Google Scholar 

  • Smith, H. W., 1951, The Kidney. Structure and Function in Health and Disease, pp. 256–263, Oxford University Press, New York.

    Google Scholar 

  • Sokol, H. W., and Sise, J., 1973, The effect of exogenous vasopressin and growth hormone on the growth of rats with hereditary hypothalamic diabetes insipidus, Growth 37: 127–142.

    PubMed  CAS  Google Scholar 

  • Stephenson, J. L., 1972, Concentration of urine in a central core model of the renal counterflow system, Kidney Int. 2: 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P., Harmanci, M. C., and Edwards, B. R., 1982, Vasopressin and intramembranous particle clusters in collecting duct cells of Brattleboro and Long-Evans rats, Ann. N. Y. Acad. Sci. 394: 518–523.

    Article  PubMed  CAS  Google Scholar 

  • Thorn, N. A., 1968, The influence of the neurohypophysial hormones and similar polypeptides on the kidneys, in: Handbook of Experimental Pharmacology, Vol. XXIII (B. Berde, ed.), pp. 372–442, Springer-Verlag, New York.

    Google Scholar 

  • Trinh-Trang-Tan, M.-M., Grünfeld, J. P., Diaz, M., and Bankir, L., 1981, ADH-dependent nephron heterogeneity in rats with hereditary hypothalamic diabetes insipidus, Am. J. Physiol. 240(Renal Fluid Electrolyte Physiol. 9): F372–F380.

    PubMed  CAS  Google Scholar 

  • Trinh-Trang-Tan, M.-M., Sokol, H. W., Bankir, L., and Valtin, H., 1982, Homozygous Brattleboro rats lack normal nephron heterogeneity as a consequence of their urine concentrating defect, Ann. N. Y. Acad. Sci. 394: 524–534.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, K. J., Rumrich, G., and Fuchs, G., 1964, Wasserpermeabilität und transtubulärer Wasserfluss corticaler Nephronabschnitte bei verschiedenen Diuresezuständen, Pflugers Arch. 280: 99–119.

    Article  CAS  Google Scholar 

  • Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23: 110–127.

    Article  CAS  Google Scholar 

  • Valtin, H., 1966, Sequestration of urea and nonurea solutes in renal tissues of rats with hereditary hypothalamic diabetes insipidus: Effect of vasopressin and dehydration on the countercurrent mechanism, J. Clin. Invest. 45: 337–345.

    Article  PubMed  CAS  Google Scholar 

  • Valtin, H., 1982, The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls, Ann. N.Y. Acad. Sci. 394: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Valtin, H., 1983, Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health, 2nd ed., Little, Brown, Boston.

    Google Scholar 

  • Valtin, H., 1984a, Renal actions by which vasopressin may aid the concentration of urine, in: Nephrology, Vol. I (R. R. Robinson, ed.), pp. 397–406, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Valtin, H., 1984b, How nephron heterogeneity abets the concentration of mammalian urine, in: One Medicine: Festschrift for Kurt Benirschke (O. A. Ryder and M. L. Byrd, eds.), pp. 309–320, Springer-Verlag, New York.

    Google Scholar 

  • Walker, L. A., and Valtin, H., 1982, Biological importance of nephron heterogeneity, Annu. Rev. Physiol. 44: 203–219.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L. A., Buscemi-Bergin, M., and Gellai, M., 1983, Renal hemodynamics in conscious rats: Effects of anesthesia, surgery, and recovery, Am. J. Physiol. 245(Renal Fluid Electrolyte Physiol. 14): F67–F74.

    PubMed  CAS  Google Scholar 

  • Walker, L. A., Gellai, M., and Valtin, H., 1986, Renal response to pentobarbital anesthesia in rats: Effect of interrupting the renin-angiotensin system, J. Pharmacol. Exp. Therap. 236: 721–728.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Valtin, H. (1987). Physiological Effects of Vasopressin on the Kidney. In: Gash, D.M., Boer, G.J. (eds) Vasopressin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8129-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8129-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8131-4

  • Online ISBN: 978-1-4615-8129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics