Skip to main content

Antiviral Agents and Inducers of Virus Resistance : Analogies with Interferon

  • Chapter
Active Defense Mechanisms in Plants

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 37))

Abstract

The-possibility that the active defence mechanisms against viruses in plants may be analogous to the interferon system in animals is not a new hypothesis. In 1940, Price (43) compared the ‘apparent recovery’ of virus-infected plants to acquired immunity in animals, and later Loebenstein (37) in 1963 suggested that acquired resistance to viruses may be caused by an interferon-like mechanism. More recently, we reported the appearance of new soluble proteins in plant cells that become resistant to viruses and pointed out the possibility of an analogy between these and interferon in animals (19, 22, 23).

‘En biologie, comme en justice, il y a des moments où l’accumulation des preuves indirectes est si forte que même les présomptions méritent d’être prises en considération’

Jacqueline De Maeyer (16)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHL, P., BENJAMA, A., SAMSON, R. & GIANINAZZI, S. (1981). Induction chez le Tabac par Pseudomonas syringae de nouvelles protéines (proteines ‘b’) associées au developpement d’une résistance non spécifique à une deuxieme infection. Phytopathotogische Zeitschrift (in press)

    Google Scholar 

  2. ANDEBRHAN, T., COUTTS, R.H.A., WAGIH, E.E. & WOOD, R.K.S. (1980). Induced resistance and changes in the soluble protein fraction of cucumber leaves locally infected with Colletotrichum lagenarium or tobacco necrosis virus. Phytopathologische Zeitschrift 98, 47–52

    Article  CAS  Google Scholar 

  3. ANTIGNUS, Y., SELA, I. & HARPAZ, I. (1977). Further studies on the biology of an antiviral factor (AVF) from virus-infected plants and its association with the N-gene of Nicotiana species. Journal of General Virology 35, 107–116

    Article  PubMed  CAS  Google Scholar 

  4. ANTONIW, J.F. & WHITE, R.F. (1980). The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathologische Zeitschrift 93, 331–341

    Article  Google Scholar 

  5. ANTONIW, J.F., RITTER, C.E., PIERPOINT, W.S. & VAN LOON, L.C. (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology 47, 79–87

    Article  CAS  Google Scholar 

  6. BATRA, G.K. & KUHN, C.W. (1975). Polyphenoloxidase and peroxidase activities associated with acquired resistance and its inhibition by 2-thiouracil in virus-infected soybean. Physiological Plant Pathology 5, 239–248

    Article  CAS  Google Scholar 

  7. BEST, R.J. (1937). On the presence of an ‘oxidase’ in the juice expressed from tomato plants infected with the virus of tomato spotted wilt. Australian Journal of Experimental Biological and Medical Science 15, 191–199

    Article  Google Scholar 

  8. CASSELLS, A.G., BARNETT, A. & BARLASS, M. (1978). The effect of polyacrylic acid treatment on the susceptibility of Nicotiana tabacum cv. Xanthi-nc to tobacco mosaic virus. Physiological Plant Pathology 13, 13–21

    Article  CAS  Google Scholar 

  9. CASSELLS, A.C. & FLYNN, T. (1978). Studies on polyacrylic acid induced resistance to viral and non-viral plant pathogens. Pesticide Science 9, 365–371

    Article  CAS  Google Scholar 

  10. CHOTHIA, C. & JANIN, J. (1975). Principles of protein-protein recognition. Nature 256, 705–708

    Article  PubMed  CAS  Google Scholar 

  11. COMMONER, B. & MERCER, F.I. (1951). Inhibition of biosynthesis of tobacco mosaic virus by thiouracil. Nature 168, 113–114

    Article  PubMed  CAS  Google Scholar 

  12. COUTTS, R.H.A. (1978). Alterations in the soluble protein patterns of tobacco and cowpea leaves following inoculation with tobacco necrosis virus. Plant Science Letters 12, 189–197

    Article  CAS  Google Scholar 

  13. DAWSON, W.O. & KUHN, C.W. (1972). Enhancement of cowpea chlorotic mottle virus biosynthesis and in vivo infectivity by 2-thiouracil. Virology 47, 21–29

    Article  PubMed  CAS  Google Scholar 

  14. DAWSON, W.O. & SCHLEGEL, D.E. (1976). The sequence of inhibition of tobacco mosaic virus synthesis by actinomycin D, 2- thiouracil and cycloheximide in a synchronous infection. Phytopathology 66, 177–181

    Article  CAS  Google Scholar 

  15. DE CLERCQ, E., ECKSTEIN, F. & MERIGAN, T.C. (1970). Structural requirements for synthetic polyanions to act as interferon inducers. Annals of the New York Academy of Sciences 173, 444–461

    Article  Google Scholar 

  16. DE MAEYER, J. (1974). Interferon: ‘du vent dans les voiles’. La Recherche 43, 5, 280–282

    Google Scholar 

  17. DE SOMER, P., DE CLERCQ, E., BILLIAU, A., SCHONNE, E. & CLAESEN, M. (1968). Antiviral activity of polyacrylic and polymethacrylic acids. Journal of Virology 2, 878–885

    PubMed  Google Scholar 

  18. FERNANDEZ, T.F. & GABORJANYI, R. (1976). Reversion of dwarfing induced by virus infection : effect of polyacrylic and gibberellic acids. Acta Phytopathologica Academiae Scientarium Hungaricae 11, 271–275

    CAS  Google Scholar 

  19. GIANINAZZI, S. & KASSANIS, B. (1974). Virus resistance induced in plants by polyacrylic acid. Journal of General Virology 23, 1–9

    Article  Google Scholar 

  20. GIANINAZZI, S. & MARTIN, C. (1975). A naturally occurring active factor inducing resistance to virus infection in plants. Phytopathologische Zeitschrift 83, 23–26

    Article  CAS  Google Scholar 

  21. GIANINAZZI, S., AHL, P. & CORNU, A. (1980). b-protein variation in virus-infected intraspecific tobacco hybrids. Acta Phytopathologica Academiae Scientarium Hungaricae (in press)

    Google Scholar 

  22. GIANINAZZI, S., MARTIN, C. & VALLEE, J.C. (1970). Hypersensibilité aux virus, température et protéines solubles chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolécules lors de la répression de la synthese virale. Comptes-Rendus Académie des Sciences, Paris 270, 2283–2386

    Google Scholar 

  23. GIANINAZZI, S., VALLEE, J.C. & MARTIN, C. (1969). Hypersensibilite aux virus, température et protéines solubles chez Ie Nicotiana Xanthi n.c. Comptes-Rendus Académie des Sciences, Paris 268, 800–802

    CAS  Google Scholar 

  24. GIANINAZZI, S., VALLEE, J.C. & MARTIN, C. (1972). Modification de la perméabilité au cours du phénomène d’hypersensibilité chez Ie Nicotiana tabacum var. Xanthi n.c. infecté avec le virus de la Mosaique du Tabac. Comptes-Rendus Academie des Sciences Paris 275, 1383–1386

    CAS  Google Scholar 

  25. GIANINAZZI, S., PRATT, H.M., SHEWRY, P.R. & MIFLIN, B.J. (1977). Partial purification and preliminary characterization of soluble leaf proteins specific to virus infected plants. Journal of General Virology 34, 345–351

    Article  Google Scholar 

  26. GIANINAZZI, S., AHL, P., CORNU, A., SCALLA, R. & CASSINI, R. (1980). First report of host b-protein appearance in response to a fungal infection in tobacco. Physiological Plant Pathology 16, 337–342

    CAS  Google Scholar 

  27. HAMPTON, R.E. & FULTON, R.W. (1961). The relation of polyphenol oxidase to instability in vitro of prune drawf and sour cherry necrotic ringspot viruses. Virology 13, 44–52

    Article  PubMed  CAS  Google Scholar 

  28. HEDRICK, J.L. & SMITH, A.J. (1968). Size and charge isomer separation and estimation of molecular weights of protein by disc electrophoresis. Archives of Biochemistry and Biophysics 126, 155–164

    Article  PubMed  CAS  Google Scholar 

  29. HIRAI, T. (1979). Action of antiviral agents. In: Plant Disease: An Advanced Treatise, Ed. by J.G. Horsfall and E.B. Cowling. Vol. I, Academic Press, 285–306

    Google Scholar 

  30. KASSANIS, B. (1952). Some effects of high temperature on the susceptibility of plants to infection with viruses. Annals of Applied Biology 39, 358–369

    Article  Google Scholar 

  31. KASSANIS, B. (1978). Forty years’ research on plant viruses at Rothamsted Experimental Station. Rothamsted Report for 1978, Part 2

    Google Scholar 

  32. KASSANIS, B. & WHITE, R.F. (1974). Inhibition of acquired resistance to tobacco mosaic virus by actinomycin D. Journal of General Virology 25, 323–324

    Article  PubMed  CAS  Google Scholar 

  33. KASSANIS, B. & WHITE, R.F. (1975). Polyacrylic acid-induced resistance to tobacco mosaic virus in tobacco cv. Xanthi. Annals of Applied Biology 79, 215–220

    Article  Google Scholar 

  34. KASSANIS, B. & WHITE, R.F. (1978). Effect of polyacrylic acid and b-proteins on TMV multiplication in tobacco protoplasts. Phytopathologische Zeitschrift 91, 269–272

    Article  CAS  Google Scholar 

  35. KASSANIS, B., GIANINAZZI, S. & WHITE, R.F. (1974). A possible explanation of the resistance of virus-infected tobacco plants to second infection. Journal of General Virology 23, 11–16

    Article  Google Scholar 

  36. KLUGE, S. & MARCINKA, K. (1979). The effects of polyacrylic acid and virazole on the replication and component formation of red clover mottle virus. Acta Virologica 23, 148–152

    PubMed  CAS  Google Scholar 

  37. LOEBENSTEIN, G. (1963). Further evidence of systemic resistance induced by localized necrotic virus infection in plants. Phytopathology 53, 306–308

    Google Scholar 

  38. MARTIN, C. (1958). Etude de quelques déviations de métabolisme chez les plants atteintes de maladies à virus. Thesis University of Paris, France

    Google Scholar 

  39. MARTIN, C. & GALLET, M. (1966). Nouvelles observations sur le phenomene d’hypersensibilité aux virus chez les végétaux. Comptes-Rendus Academie des Sciences, Parts 263, 1316–1318

    Google Scholar 

  40. MAUGR, T.H., II. (1976). Chemotherapy Antiviral agents come of age. Science 192, 128–132

    Article  Google Scholar 

  41. MOZES, R., ANTIGNUS, Y., SELA, I. & HARPAZ, I. (1978). The chemical nature of an antiviral factor (AVF) from virus infected plants. Journal of General Virology 38, 241–249

    Article  CAS  Google Scholar 

  42. PORTER, C.A. & WEINSTEIN, L.H. (1961). Incorporation of 2- thiouracil-S35 into RNA and acid soluble nucleotides of Varmor 48 tobacco. Virology 15, 504–506

    Article  PubMed  CAS  Google Scholar 

  43. PRICE, W.C. (1940). Acquired immunity from plant virus diseases. The Quarterly Review of Biology 15, 338–361

    Article  Google Scholar 

  44. RAGETLI, H.W.J. (1975). The mode of action of natural plant virus inhibitors. Current Advances in Plant Science 19, 321–334

    Google Scholar 

  45. RAGETLI, J.P.H. & WEINTRAUB, M. (1974). The influence of inhibitors on the reaction of indicator plants. Contribution No. 339. Research Station, Agriculture Canada, Vancouver, B.C., 1–13

    Google Scholar 

  46. ROSS, A.F. (1961a). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14, 329–339

    Article  PubMed  CAS  Google Scholar 

  47. ROSS, A.F. (1961b). Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358

    Article  PubMed  CAS  Google Scholar 

  48. ROTTIER, P.J.M., REZELMAN, G. & VAN KAMMEN, A. (1979). The inhibition of cowpea mosaic virus replication by actinomycin D. Virology 92, 299–309

    Article  PubMed  CAS  Google Scholar 

  49. SELA, I. & APPELBAUM, S.W. (1962). Occurrence of an antiviral factor in virus-infected plants. Virology 17, 453–548

    Article  Google Scholar 

  50. SHEPARD, J.F. (1977). Regeneration of plants from protoplasts of potato virus X-infected tobacco leaves. II. Influence of virazole on the frequency of infection. Virology 78, 261–266

    Article  PubMed  CAS  Google Scholar 

  51. SMOOKLER, M.M. (1971). Properties of inhibitors of plant virus infection occurring in the leaves of species in the Chenopodiales. Annals of Applied Biology 69, 157–168

    Article  Google Scholar 

  52. STEIN, A. & LOEBENSTEIN, G. (1972). Induced interference by synthetic polyanions with the infection of tobacco mosaic virus. Phytopathology 62, 1461–1466

    Article  CAS  Google Scholar 

  53. STEIN, A., LOEBENSTEIN, G. & SPIEGEL, S. (1979). Further studies of induced interference by a synthetic polyanion of infection by tobacco mosaic virus. Physiological Plant Pathology 15, 241–255

    Article  Google Scholar 

  54. STEWART, W.E. II (1979). The interferon system. Springer-Verlag, Wien and New York

    Google Scholar 

  55. TEAKLE, D.S. & NIENHAUS, F. (1974). The effect of plant virus inhibitors on transmission of tobacco necrosis by Olpidium brassicae. Phytopathologische Zeitschpift 80, 1–8

    Article  Google Scholar 

  56. TOMLINSON, J.A., WALKER, V.M., FLEWETT, T.H. & BARCLAY, G.R. (1974). The inhibition of infection by cucumber mosaic virus and influenza virus by extracts from Phytolacca americana. Journal of General Virology 22, 225–232

    Article  PubMed  CAS  Google Scholar 

  57. VAN LOON, L.C. (1976). Specific soluble leaf proteins in virus-infected tobacco plants are not normal constituents. Journal of General Virology 30, 375–379

    Article  Google Scholar 

  58. VAN LOON, L.C. (1977). Induction by 2-chloroethylphosphonic acid of viral-like lesions, associated proteins and systemic resistance in tobacco. Virology 80, 417–420

    Article  PubMed  Google Scholar 

  59. VAN LOON, L.C. & VAN KAMMEN, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40, 199–211

    Article  Google Scholar 

  60. VERMA, H.M. & AWASTHI, L.P. (1979). Antiviral activity of Boerhaavia diffusa root extract and the physical properties of the virus inhibitor. Canadian Journal of Botany 57, 926–932

    Article  CAS  Google Scholar 

  61. VERMA, H.M., AWASTHI, L.P. & SAXENA, K.C. (1979). Isolation of the virus inhibitor from the root extract of Boerhaavia diffusa inducing systemic resistance in plants. Canadian Journal of Botany 57, 1214–1217

    Article  CAS  Google Scholar 

  62. WHITE, R.F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412

    Article  PubMed  CAS  Google Scholar 

  63. WYATT, S.D. & SHEPHERD, R.J. (1969). Isolation and characterization of virus inhibitor from Phytolacca americana. Phytopathology 59, 1787–1794

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Gianinazzi, S. (1982). Antiviral Agents and Inducers of Virus Resistance : Analogies with Interferon. In: Wood, R.K.S. (eds) Active Defense Mechanisms in Plants. NATO Advanced Study Institutes Series, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8309-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8309-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8311-0

  • Online ISBN: 978-1-4615-8309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics