Skip to main content

Final-Stage Sintering and Grain Growth in Oxides

  • Chapter
Defects and Transport in Oxides

Part of the book series: Battelle Institute Materials Science Colloquia ((BIMSC))

  • 285 Accesses

Abstract

The atomic transport processes that result in densification during the sintering of oxides are controlled primarily by volume diffusion or by grain-boundary diffusion. Sintering can be described phenomenologically in terms of diffusion of atomic species from internal surfaces (i.e., grain boundaries) to pores. The flux of atoms from the grain boundaries is a function of the appropriate rate-limiting diffusion coefficient and the chemical-potential gradient. The purpose of this paper is to show that changes in the chemical-potential gradient can account for the densification of oxides that have been sintered to theoretical density.

The densification of Y2O3 doped with ThO2 is described since the addition of 5 mole percent or more of ThO2 to Y2O3 allows the densification to proceed to theoretical density. The requirement of 5 mole percent dopant for successful densification casts doubt on a mechanism entailing the concentration of point defects, and it has been shown by indirect experimental techniques that the thoria solute is segregated at the yttria grain boundaries.

Grain growth occurs during densification, and this geometric change in the microstructure causes a decrease in the chemical-potential gradient, which is the driving force for sintering. Grain-growth kinetics of Y2O3 at 2000°C follow the theoretical grain-growth law, D2 - D 2o = kt (where Do is the initial grain size, D is the grain size after time t, and k is a constant), and show a decrease in the grain-boundary mobility as the concentration of the thoria in solid solution increases. When the amount of thoria exceeds the solid-solubility limit, the grain-growth kinetics follow a cubic-grain-growth law and can be described in terms of a grain-growth process that is controlled by the coalescence of the second phase.

If the assumption is made that the velocity of the average grain boundary is proportional to dD/dt, where D is the average diameter of the yttria grains, the effect of the thoria solute on the grain growth of yttria can be described in terms of an impurity drag as described by Cahn for low-velocity grain growth with a low driving force . Thus the inhibition of the grain growth or the impurity drag of the ThO2 solute in the yttria grain boundaries causes the chemical-potential gradient in doped samples to be greater than in undoped samples, and this inhibition of the grain growth allows the pores to remain on grain boundaries and allows the densification to proceed to completion, i.e., to theoretical density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, B. H., and Balluffi, R. W., “Mechanism of Sintering of Copper”, Acta Met., 5 (11), 666–77 (1957).

    Article  CAS  Google Scholar 

  2. Burke, J. E., J. Am. Ceram Soc., 40 (3), 80–85 (1957).

    Article  CAS  Google Scholar 

  3. Seigle, L., Kinetics of High-Temperature Processes, W. D. Kingery (Ed.), Technology Press of Massachusetts Institute of Technology, Cambridge, and John Wiley & Sons, Inc., New York (1959), pp. 172–78.

    Google Scholar 

  4. Van Buren, H. G., and Hornstra, J., Reactivity of Solids, J. H. de Boer, W. G. Burgers, E. W. Gorter, J.P.F. Huesse, and G.C.A. Schuit (Eds.), Elsevier Publishing Co., Princeton, N.J. (1961), p. 112.

    Google Scholar 

  5. Coble, R. L., and Burke, J. E., Progress in Ceramic Science, Vol. 3, J. E. Burke (Ed.), Pergamon Press, New York (1964), pp. 197–251.

    Google Scholar 

  6. Reijnen, P.J.L., Problems in Nonstoichiometry, A. Rabenau (Ed.), North Holland Publishing Company, Amsterdam (1970), pp. 219–238.

    Google Scholar 

  7. Jorgensen, P. J., and Westbrook, J. H., J. Am. Ceram. Soc., 47, 332 (1964).

    Article  CAS  Google Scholar 

  8. Jorgensen, P. J., and Anderson, R. C, J. Am. Ceram. Soc., 50, 553 (1967).

    Article  CAS  Google Scholar 

  9. Jorgensen, P. J., and Schmidt, W. G., J. Am. Ceram. Soc., 53, 24 (1970).

    Article  CAS  Google Scholar 

  10. Anderson, R. C, U. S. Patent, 3, 574, 645 (April 13, 1971).

    Google Scholar 

  11. Subbarao, E. C., Sutter, P. H., and Hrizo, J., J. Am. Ceram. Soc., 48, 443 (1965).

    Article  CAS  Google Scholar 

  12. Edwards, H. S., Rosenberg, A. F., and Bittel, J. T., U. S. Air Force Final Report, Contract No. AF33(657)-8470, July 1963, 146 pp. (NAS Document #N63–20007).

    Google Scholar 

  13. Harkins, R. J., and Alcock, C. B., J. Nucl. Mater., 26, 112 (1968).

    Article  Google Scholar 

  14. King, A. D., J. Nucl. Mater., 38, 347 (1971).

    Article  CAS  Google Scholar 

  15. Berard, M. F., Wirkus, C. D., and Wilder, D. R., J. Am. Ceram. Soc., 51, 643 (1968).

    Article  CAS  Google Scholar 

  16. Wirkus, C. D., Berard, M. F., and Wilder, D. R., J. Am. Ceram. Soc., 50, 113 (1967).

    Article  CAS  Google Scholar 

  17. Berard, M. F., and Wilder, D. R., J. Am. Ceram Soc., 52, 85 (1969).

    Article  CAS  Google Scholar 

  18. Etsell, T. H.,Z. Naturforsch., 27A, 1138 (1972).

    Google Scholar 

  19. Fullman, R. L., Trans. AIME, 197, 447 (1953).

    CAS  Google Scholar 

  20. Westbrook, J. H., and Aust, K. T., Acta Met., 11, 1161 (1963).

    Article  Google Scholar 

  21. Aust, K. T., and Rutter, J. W., Trans. AIME, 215, 119 (1969).

    Google Scholar 

  22. Rutter, J. W., and Aust, K. T., Trans. AIME, 218, 682 (1960).

    CAS  Google Scholar 

  23. Cahn, J. W., Acta Met., 10, 789 (1962).

    Article  CAS  Google Scholar 

  24. Burke, J. E., Ceramic Microstructures, Proc. 3rd Int. Mater. Symp., Berkeley, Calif., June 1966, p. 681.

    Google Scholar 

  25. Burke, J. E., and Turnbull, D., Progress in Metals Physics, Vol. HI, Bruce Chalmers (Ed.), Pergamon Press, London (1952), pp. 220–92.

    Google Scholar 

  26. Hillert, M., Acta Met., 13, 227 (1965).

    Article  CAS  Google Scholar 

  27. Greenwood, G. W., Acta Met., 4, 243 (1956).

    Article  CAS  Google Scholar 

  28. Lifschitz, I. M., and Slyozov, V. V., Zh. Eksp. Teor. Fiz., 35, 479 (1958).

    Google Scholar 

  29. Zener, C., personal communication to C. S. Smith, Trans. AIME, 175, 15 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jorgensen, P.J. (1974). Final-Stage Sintering and Grain Growth in Oxides. In: Seltzer, M.S., Jaffee, R.I. (eds) Defects and Transport in Oxides. Battelle Institute Materials Science Colloquia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8723-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8723-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8725-5

  • Online ISBN: 978-1-4615-8723-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics