Skip to main content

Part of the book series: The Subnuclear Series ((SUS))

  • 75 Accesses

Abstract

Nature is certainly Poincaré invariant. However it is possible that her forces possess a much higher degree of space-time invariance than we have heretofore realized, such as invariance under transformations which relate fermions and bosons, so-called supersymmetry transformations(1). As will be explained below, exact supersymmetry of the forces (i.e., of the Lagrangian) as well as of the physical states requires bosons and fermions to come in mass-degenerate multiplets; evidently, nature does not exhibit such behavior. However it is nonetheless possible that nature is supersymmetric but that this is not manifest through degeneracy between bosons and fermions. Such a state of affairs is called spontaneously broken supersymmetry and occurs when the lowest energy state (the vacuum) is not super-symmetric even though the forces are(2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. For an introduction to supersymmetry and a more complete list of references, see, e.g., S. Ferrara, Erice Lecture Notes, Aug. 1978 (CERN preprint TH2514) and

    Google Scholar 

  2. P. Fayet and S. Ferrara, Phys. Reports 32C, 249 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  3. For example, nature— in particular electromagnetism—is rotation invariant; however if one were living inside a huge ferromagnet, the essential rotation invariance of the fundamental interactions would not be trivially apparent: we would say that the “vacuum” (here the interior of the ferromagnet) did not possess the rotation invariance, even though the fundamental interactions do.

    Google Scholar 

  4. P. Fayet and J. Iliopoulos, Phys. Lett. 51B, 461 (1974).

    ADS  Google Scholar 

  5. P. Fayet, Nuovo Cim. 31A, 626 (1976).

    Article  ADS  Google Scholar 

  6. P. Fayet, Phys. Lett. 69B, 489 (1977).

    ADS  Google Scholar 

  7. G. R. Farrar and P. Fayet, Phys. Lett. 76B, 575 (1978).

    ADS  Google Scholar 

  8. G. R. Farrar and P. Fayet, Caltech Preprint CALT-68–669. To be published in Phys. Lett. B.

    Google Scholar 

  9. P. Fayet, Nucl. Phys. B90, 104 (1975);

    Article  ADS  Google Scholar 

  10. P. Fayet, Nucl. Phys. B78, 14 (1974).

    Article  ADS  Google Scholar 

  11. P. Fayet, Proc. of the Orbis Scientiae, Coral Gables (Florida, USA), Jan. 1978, New Frontiers in H. E. Physics (Plenum Pub. Corp., New York) p. 413 (and Caltech preprint CALT-68–641).

    Google Scholar 

  12. S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977).

    Article  ADS  Google Scholar 

  13. In the Majorana representation, in which the Dirac matrices are real, a Majorana spinor is simply a 4-component real spinor.

    Google Scholar 

  14. The superfield formalism (A. Salam and G. Strathdee, Nucl. Phys. B76, 477 (1974);

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Ferrara, J. Wess, and B. Zumino, Phys. Lett. 51B, 239 (1974)) allows the fields in a supermultiplet to be treated as a unit, by virtue of the introduction of anticommuting variables, θ. For instance here, the superfield S contains ψL and φ, and V contains Vμ and λ. This requires the use of so-called auxiliary fields, which can be eliminated in favor of physical fields. See also (1).

    ADS  Google Scholar 

  16. J. Wess and B. Zumino, Nucl. Phys. B78, 1 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  17. These estimates can be obtained several ways. (i) Starting with the rates for K OS → π+π-y and KL → π+π-πo, taking into account differences arising in the amplitudes from factors of θCabibbo, gs, e etc., one concludes that a 1/2 GeV/c2 Ro decaying to tttt nuino would have a lifetime ~ 10-11±1½s. Using three-body phase space this can be scaled to mR= 1 GeV/c2 (τ ≃ 10-13±1½sec) or mR = 1.5 GeV/c2 (τ ≈ 10-14±1½sec). (ii) The decay of an R-π via annihilation of a quark and gluino → spin-0 quark → quark + nuino can be related to the formula for ordinary π → μv, however without the helicity suppression of π → μv from the V-A coupling. Taking into account gs vs. e and using fR-π = fπ gives, for mR-π = 1.2 GeV/c2, τ ~ 10-12–10-13s. (iii) Comparing with Σ → nπγ, accounting for different factors of θC, e, and gs, then accounting for the different Q values would give for mR ~ 1.2 GeV/c2, τ ~ 10-13 10-14 s.

    Google Scholar 

  18. B. de Wit and D. Z. Freedman, Phys. Rev. Lett. 35. 827 (1975).

    Article  ADS  Google Scholar 

  19. P. Fayet, Phys. Lett. 70B, 461 (1977).

    ADS  Google Scholar 

  20. G. Coremans-Bertrand et al., Phys. Lett. 65B, 480 (1976).

    ADS  Google Scholar 

  21. B. Barish et al., Caltech preprint CALT-68–655.

    Google Scholar 

  22. P. C. Bosetti et al., Phys. Lett. 74B, 143 (1978);

    ADS  Google Scholar 

  23. P. Alibran et al., Phys. Lett. 74B, 134 (1978);

    ADS  Google Scholar 

  24. T. Hansl et al., Phys. Lett. 74B, 139 (1978).

    ADS  Google Scholar 

  25. T. Goldman, Phys. Lett. B, to be published.

    Google Scholar 

  26. G. R. Farrar, in preparation.

    Google Scholar 

  27. Bourquin and J. M. Gaillard, Nucl. Phys. B114, 334 (1976).

    Article  ADS  Google Scholar 

  28. P. Fayet, Phys. Lett., to be published (Caltech preprint CALT-68–663).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Farrar, G.R. (1980). Supersymmetry in Nature. In: Zichichi, A. (eds) The New Aspects of Subnuclear Physics. The Subnuclear Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9170-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9170-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9172-6

  • Online ISBN: 978-1-4615-9170-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics