Skip to main content

Application of Inductively Coupled Plasma Spectrometry for the Analysis of Ceramics and Glasses

  • Chapter
Advances in Materials Characterization II

Part of the book series: Materials Science Research ((MSR,volume 19))

Abstract

The analysis of ceramics, glasses, and other refractory materials by atomic spectroscopic techniques is a well — established analytical chemistry approach. During the past decade development of new spectrochemical plasma sources, in particular the inductively coupled plasma (ICP), direct current plasma jet (DCP), and microwave induced plasma (MIP), has revelutionized spectrochemical measurements of major, minor, and trace elements in diverse industrial materials. Owing to the very high temperature, stability, and low chemical interferences of the ICP discharge, ICP spectrometry is especially suited for the analysis of ceramics, glasses, and refractories. The objective of this article is to review the features and capabilities of ICP spectrometry for the analysis of ceramics, glasses, and refractory materials. The prospects for development are substantial, and maturity in the application of ICP spectrometry to these materials is expected to occur by the end of the decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Methods for Emission Spectrochemical Analysis,” American Society for Testing and Materials, 7th Edition, Philadelphia (1982).

    Google Scholar 

  2. W.M. Wise, R.A. Burdo, and J.S. Sterlace, Analysis of Glasses and Ceramics by Atomic Spectroscopy, Prog. Anal. Atom. Spectrosc. 1:201 (1978).

    CAS  Google Scholar 

  3. M.S. Cresser and L. Ebdon, eds., “Annual Reports on Analytical Atomic Spectroscopy,” Vol. 12, Royal Society of Chemistry, London (1983).

    Google Scholar 

  4. M.S. Cresser and B.L. Sharp, eds., “Annual Reports on Analytical Atomic Spectroscopy,” Vol. 11, Royal Society of Chemistry, London (1982).

    Google Scholar 

  5. P.N. Keliher, W.J. Boyko, J.M. Patterson III, and J.W. Hershey, Emission Spectrometry, Anal. Chem. 56:133R (1984).

    Article  CAS  Google Scholar 

  6. M. Thompson and J.N. Walsh, “A Handbook of Inductively Coupled Plasma Spectrometry,” Blackie, Glasgow and London (1983).

    Google Scholar 

  7. R.M. Barnes, Progress in Inductively Coupled Plasma Analytical Spectroscopy,.J. Testing Eval. 12:194 (1984).

    Article  CAS  Google Scholar 

  8. R.M. Barnes, Frontiers in Inductively Coupled Plasma Spectroscopy, Chem. Anal. (Warsaw) 28:179 (1983).

    CAS  Google Scholar 

  9. R.M. Barnes, Recent Advances in Analytical Atomic Radiofrequency Emission Spectroscopy, Phil. Trans. II. Soc. London A 305:499 (1982).

    Article  CAS  Google Scholar 

  10. R.M. Barnes, Inductively Coupled Plasma Atomic Emission Spectroscopy: A Review, Trends Anal. Chem. 1:51 (1981).

    Article  CAS  Google Scholar 

  11. R.M. Barnes, Recent Developments in Emission Spectroscopy with Inductively Coupled Plasma Discharge, Kar1-Marx-Univ. (Leipzig) Wissensch. Z. 28:383 (1979).

    CAS  Google Scholar 

  12. R.M. Barnes, Recent Advances in Emission Spectroscopy: Inductively Coupled Plasma Discharges for Spectrochemical Analysis, Crit. Rev. Anal. Chem. 7:203 (1978).

    Article  CAS  Google Scholar 

  13. R.M. Barnes, ed., ICP Information Newsletter, University of Massachusetts, Amherst, MA (1975–1984).

    Google Scholar 

  14. R.F. Browner and A.W. Boom, Sample Introduction: The Achilles’ Heel of Atomic Spectroscopy? Anal. Chem. 56:787A (1984).

    Article  Google Scholar 

  15. R.F. Browner and A.W. Boom, Sample Introduction Techniques for Atomic Spectroscopy, Anal. Chem. 56:875A (1984).

    CAS  Google Scholar 

  16. D.R. Demers, Hollow Cathode Lamp-Excited ICP Atomic Fluorescence Spectrometry — An Update, Spectrochim. Acta 40B(l/2) (1985), in press.

    Google Scholar 

  17. B.D. Pollard, M.B. Blackburn, S. Nikdel, A. Massoumi, and J.D. Winefordner, Atomic Fluorescence Spectrometry in the Inductively Coupled Plasma with a Continuous Wave Dye Laser, Appl. Spectrosc. 33:5 (1979).

    Article  CAS  Google Scholar 

  18. J.D. Winefordner, Atomic Fluorescence Spectrometry, Past, Present, and Future, in: “Recent Advances in Analytical Spectrocopy,” K. Fuwa, ed., Pergamon Press, Oxford (1982).

    Google Scholar 

  19. A.R. Date and A.L. Gray, Determination of Trace Elements in Geological Samples by Inductively Coupled Plasma Source Mass Spectrometry, Spectrochim. Acta, 40B(l/2) (1985), in press.

    Google Scholar 

  20. R.S. Houk, ICP Mass Spectrometry from the Eye of a Beholder, ICP Inf. Nevsl. 10:194 (1984).

    Google Scholar 

  21. D.F. Douglas, ICP-MS at SCIEX, ICP Inf. Nevsl. 10:196 (1984).

    Google Scholar 

  22. A.L. Gray, Continuing Development of ICP Source Mass Spectrometry at the university of Surrey, ICP Inf. Nevsl. 10:200 (1984).

    Google Scholar 

  23. A.R. Date, ICP-MS Applications Development at the British Geological Survey, ICP Inf. Nevsl. 10:202 (1984).

    Google Scholar 

  24. R.A. Trassy and J.M. Mermet, Interférences spectrales, in: “Les Applications Analytiques des Plasmas HF,” Lavoisier, Paris (1984).

    Google Scholar 

  25. R.A. Burdo and Y.-S. Su, Fusion and Acid Decomposition of Silicate and Refractory Materials, Eastern Analytical Symposium, November (1983), ICP Inf. Nevsl. 9:588 (1984).

    Google Scholar 

  26. H.J. Sanders, High-tech Ceramics, Chem. Engr. Nevs 62 (28):26 (1984).

    Article  Google Scholar 

  27. J. Debras-Guedon, Le dosage du bore dans les matières premières et produits de l’industrie céramique par spectrométrie d’émission avec excitation par plasma induit par haute fréquence, Bull. Soc. Fr. Céram. 123:29 (1979).

    CAS  Google Scholar 

  28. H. Uchikava, R. Furuta, and Y. Mihara, Determination of Phosphorus in Ceramic Materials and Ceramic Products by Inductively Coupled Plasma — Atomic Emission Spectrometry, Bunseki Kagaku 32:291 (1983).

    Article  Google Scholar 

  29. H. Uchikava, R. Furuta, and Y. Mihara, Determination of Cadmium in Ceramic Materials and Ceramine Products by Inductively Coupled Plasma — Atomic Emission Spectroscopy, Bunseki Kagaku 32:673 (1983).

    Article  Google Scholar 

  30. H. Schroth, Quantitative Emissionspektranalyse von der Keraminkmassen mit induktiv gekoppelter Plasmaanregung, Z. Anal. Chem. 269:286 (1979).

    Article  Google Scholar 

  31. C. McCrory-Joy and D.C. Joy, Chemical and Instrumental Analysis of Ferrites, Talanta 30:299 (1983).

    Article  CAS  Google Scholar 

  32. T. Catterick and D.A. Hickman, Sequential Multi-element Analysis of Small Fragments of Glass by Atomic-emission Spectrometry Using an Inductively Coupled Radiofrequency Argon Plasma Source, Analyst 104:516 (1979).

    Article  CAS  Google Scholar 

  33. D.A. Hickman, G. Harbottle, and E.V. Sayre, The Selection of the Best Elemental Variable for the Classification of Glass Samples, Forensic Sci. Int. 23:189 (1983).

    Article  CAS  Google Scholar 

  34. D.A. Hickman, Elemental Analysis and the Discrimination of Sheet Glass Samples, Forensic Sci. Int. 23:213 (1983).

    Article  CAS  Google Scholar 

  35. D.A. Hickman, Linking Criminals to the Scene of the Crime vith Glass Analysis, Anal. Chem. 56:844A (1984).

    CAS  Google Scholar 

  36. F.A. Hart and S.J. Adams, The Chemical Analysis of Romano-British Pottery from the Alice Holt Forest, Hampshire, by Means of Inductively — Coupled Plasma Emission Spectrometry, Archaeom. 25:179 (1983).

    Article  CAS  Google Scholar 

  37. S.H. Weissman and S.G. Hallet, Quantitative Analysis of Phosphosilicate Glass Films on Silicon Wafers, Sandia Report SAND82–0039 (1982).

    Google Scholar 

  38. H. Kojima, E. Kitazume, F. Nagata, and M. Ezawa, Analysis of Elements (Ca, Fe, Ge, Lu, Sm, Y) in Bubble Garnet Films by Inductively Coupled Plasma Atomic Emission Spectrometry, Bunseki Kagaki 30:667 (1981).

    Article  CAS  Google Scholar 

  39. E. Grallath, P. Tshöpel, G. Kölblin, U. Stix, and G. Tölg, Zur Spektralphotometrie und Emissionssekmetrie mit CMP, ICP von Bor-Spuren in Metallen, Silicium und Quartz nach HF-Ausschluss und Abtrennung durch BF3-Destillation bzs ausschuettein von BF4-Ionen Assoziaten, Fresenius Z. Anal. Chem. 302:40 (1980).

    Article  CAS  Google Scholar 

  40. Kh. I. Zil’bershtein, Recent Soviet ICP Studies, ICP Inf. Newsl. 8:445 (1983).

    Google Scholar 

  41. S.E. Church, Multielement Analysis of Fifty-four Geochemical Reference Samples Using Inductively Coupled Plasma — Atomic Emission Spectrometry, Geostandars Newsl. 5:133 (1981).

    Article  Google Scholar 

  42. S.E. Church, Trace Element Determination in Geological Reference Materials — An Evaluation of the ICP-AES Method for Geochemistry Applications, in: “Developments in Atomic Plasma Spectrochemical Analysis,” R.M. Barnes, ed., Wiley, London (1981).

    Google Scholar 

  43. A. Wittman, J. Hancroft, W. Hughes, and K. Ohls, Application of ICP-OES in Steelworks Laboratories, in: “Developments in Atomic Plasma Spectrochemical Analysis,” R.M. Barnes, ed., Wiley, London (1981).

    Google Scholar 

  44. J.O. Burman, ICP-OES Applications in Steel Industry. Steel and Slag Analysis, in: “Developments in Atomic Plasma Spectrochemical Analysis,” R.M. Barnes, ed., Wiley, London (1981).

    Google Scholar 

  45. G.M. Rüssel and A.E. Watson, The Spectrometric Analysis of Chromium Bearing Materials with Particular Reference to Ferrochromium Slags and Chromite Ores,” NIM Report 1907 National Institute of Metallurgy, Randburg, South Africa (1977).

    Google Scholar 

  46. H. Hughes, Analysis Survey1: Oxide Materials, Iron Steel Int. 53:13 (1980).

    CAS  Google Scholar 

  47. J.P. Degre, Plasma Emission Spectrometry for Analysis of Cements, ICP. Inf.. Newsl., 7:384 (1982).

    Google Scholar 

  48. A.F. Ward, V.J. Luciano, and L.F. Marciello, Development of an Analytical Procedure for Elemental Determinations in Silicic Materials Using the ICAP, in: “Applications of Plasma Emission Spectrochemistry,” R.M. Barnes, ed., Heyden, Philadelphia (1979).

    Google Scholar 

  49. N.-C. Ru, W.-M. Chang, Z.-C. Jiang, and Y.-E. Zeug, The Determination of Trace Rare Earth Elements in High-Purity Yttrium Oxide by Inductively Coupled Plasma — Atomic Emission Spectroscopy, Spectrochim. Acta 38B:175 (1983).

    Google Scholar 

  50. R.M. Barnes and H.S. Mahanti, Analysis of Bauxite by Inductively Coupled Plasma — Atomic Emission Spectroscopy, Spectrochim. Acta 38B:193 (1983).

    CAS  Google Scholar 

  51. G.F. Wallace, V.V. Pire, and R.D. Ediger, A Hydrofluoric Acid Resistant Sample Introduction System for ICP Atomic Emission Spectroscopy, Can. J. Spectrosc. 27:46 (1982).

    CAS  Google Scholar 

  52. W. Zamechek, R.J. Ledwandowski, R.G. Parkhurst, and A.J. Ellgren, Trace Metal Analysis in Silicon and Aluminum Metals by Inductively Coupled Plasma, in: “Applications of Inductively Coupled Plasmas to Emission Spectroscopy,” R.M. Barnes, ed., Franklin Institute Press, Philadelphia (1978).

    Google Scholar 

  53. H. Saisho, M. Tanaka, K. Sushida, and K. Nakayama, Accurate Analysis of Zirconia Ceramics by Inductively Coupled Plasma Emission Spectrometry, in: “The Pittsburgh Conference and Exposition on Analytical Chemistry and Applied Spectroscopy. 1984 Abstracts,” Atlantic City (1984).

    Google Scholar 

  54. P. Hulmston, The Application of Inductively-Coupled Plasma Emission Spectrometry to the Determination of Impurities in Boron and Boron Compounds, Anal. Chim. Acta 155:247 (1983).

    Article  CAS  Google Scholar 

  55. G. Czupryna and S. Natansohn, Analysis of Silicon Nitride, in: “Advances in Materials Characterization,” D.R. Rossington, R.A. Condrate, and R.L. Snyder, eds., Plenum, New York (1983).

    Google Scholar 

  56. S. Natansohn and G. Czupryna, Determination of Impurities in Industrial Products by D.-C. Plasma Emission Spectrometry, Spectrochim. Acta, 38B:317 (1983).

    CAS  Google Scholar 

  57. A. Gremion and J.M. Duchoud, A New Conception of Laboratory Analysis in the Plaster Industry, Ciments, Bétons, Platres, Chaux No. 742–3 (1983).

    Google Scholar 

  58. H.S. Mahanti and R.M. Barnes, Analysis of High-Purity Graphite for Trace Elements by Inductively Coupled Plasma Atomic Emission Spectrometry after Chelating Resin Preconcentration, Anal. Chem. 55:403 (1983).

    Article  CAS  Google Scholar 

  59. H.C. Hoare and R.A. Mostyn, Emission Spectrometry of Solutions and Powders in a High-Frequency Plasma Source, Anal. Chem. 39:1153 (1967).

    Article  CAS  Google Scholar 

  60. J.Y. Marks, D.E. Fornwalt, and R.E. Yungk, Application of a Solid Sampling Device to the Analysis of High Temperature Alloys by ICP-AES, Spectrochim. Acta 38B:107 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Barnes, R.M. (1985). Application of Inductively Coupled Plasma Spectrometry for the Analysis of Ceramics and Glasses. In: Snyder, R.L., Condrate, R.A., Johnson, P.F. (eds) Advances in Materials Characterization II. Materials Science Research, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9439-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9439-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9441-3

  • Online ISBN: 978-1-4615-9439-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics