Skip to main content

Neurotransmitter Interactions and Responsivity to Cholinomimetic Agents

  • Chapter
Neurotransmitter Interactions and Cognitive Function

Abstract

There is now overwhelming evidence for the involvement of forebrain cholinergic systems in Alzheimer’s disease and the cognitive processes that subserve learning and memory (Perry et al., 1978; Bigl et al., 1987; Koshimura et al., 1987; Doucette et al., 1986; Ichimiya et al., 1986; Saper et al., 1985;Whitehouse, 1986; McGeer et al., 1984; Mann et al., 1986; Giacobini, 1990; Wenk et al., 1987). Support for the role of forebrain cholinergic systems in learning and memory can be gleaned from innumerable studies in which perturbation of forebrain cholinergic systems, whether through pharmacological means or lesion of the nucleus basalis of Meynert (nbM), has been demonstrated to profoundly impair learning and memory. This literature has been amply reviewed in recent articles and numerous chapters in this book (Wenk and Olton, 1987; Gold and Zornetzer, 1983; Dekker et al., 1991) and will not be reiterated here. In general, however, lesions of the nbM have been shown to impair performance on a very large variety of tasks and in a large and varied number of mammalian species. A smaller, but nevertheless voluminous, literature also attests to the ability of cholinomimetic agents such as physostigmine, oxotremorine, pilocarpine, etc. to at least partially reverse the learning and memory deficits induced by nbM lesions (Haroutunian et al., 1990c; Mandel et al., 1989; Fine et al., 1985; Bhat et al., 1990; Haroutunian et al., 1989b, 1990; Murray and Fibiger, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell A, Sarna GS, Hutson PH, Cruzon G (1989): An in vivo dialysis and behavioural study of the release of 5-HT by p-chloroamphetamine in resperine-treated rats. Br J Pharmacol 91:206–212

    Google Scholar 

  • Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979): Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiat 135:216–223

    Google Scholar 

  • Aghajanian GK, Sprouse JS, Rasmussen K (1987): Physiology of the midbrain serotonin system: In: Psychopharmacology: The Third Generation of Progress, Meltzer HY, ed. New York: Raven Press, pp 141–149

    Google Scholar 

  • Altman HJ, Normile H (1988): What is the nature of the role of the serotonergic nervous system in learning and memory: Prospects for development of an effective treatment strategy for senile dementia. Neurobiol Aging 9:627–638

    Google Scholar 

  • Altman HJ, Nordy DA, Ogren SO (1984): Role of serotonin in memory: Facilitation by alaproclate and zimeldine. Psychopharmacology 84:496–502

    Google Scholar 

  • Altman HJ, Stone WS, Ogren SO (1987): Evidence for a possible functional interaction between serotonergic and cholinergic mechanisms in memory retreival. Behav Neural Biol 48:49–62

    Google Scholar 

  • Andrade R, Aghajanian GK (1985): Opiate- and alpha2-adrenoceptor-induced hyperpolarization of locus ceruleus neurons in brain slices: Reversal by cyclic adenosine 3′:5′-monophosphate analogues. J Neurosci 5:2359–2364

    Google Scholar 

  • Aou S, Oomura Y, Nishino H (1983a): Influence of acetylcholine on neuronal activity in monkey orbital cortex during bar press feeding task. Brain Res 275:178–182

    Google Scholar 

  • Aou S, Oomura Y, Nishino H, Inokuchi A, Mizuno Y (1983b): Influence of catecholamines on reward-related neuronal activity in monkey orbitofrontal cortex. Brain Res 267:165–170

    Google Scholar 

  • Arai H, Kosaka K, Iizuka R (1984): Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer’s-type dementia. J Neurochem 43:388–393

    Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1985a): Catecholamines and cognitive decline in aged nonhuman primates. Ann NY Acad Sci 444:218–234

    Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1985b): α2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1279

    Google Scholar 

  • Arnsten AFT, Cai JX, Goldman-Rakic PS (1988): The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    Google Scholar 

  • Baker GB, Reynolds GP (1989): Biogenic amines and their metabolites in Alzheimer’s disease: Noradrenaline, 5-hydroxytryptamine and 5-hydroxyindole-3-acetic acid depleted in hippocampus but not in substantia innominata. Neurosci Lett 100:335–339

    Google Scholar 

  • Bakhit C, Benoit R, Bloom FE (1983): Effects of cysteamine on pro-somatostatin related peptides. Regul Pept 6:169–177

    Google Scholar 

  • Beal MF, Svendsen CN, Bird ED, Martin JB (1987): Somatostatin and neuropeptide Y are unaltered in the amygdla in schizophrenia. Neurochem Pathol 6:169–176

    Google Scholar 

  • Beani L, Tanganelli T, Bianchi C (1986): Noradrenergic modulation of cortical acetylcholine release in both direct and gamma-aminobutyric acid-mediated. J PET 236:230–236

    Google Scholar 

  • Beller SA, Overall JE, Swann AC (1985): Efficacy of oral physostigmine in primary degenerative dementia. Psychopharmacology 87:147–151

    Google Scholar 

  • Bergman I, Brane G, Gottfries CG, Josteil KG, Karlsson I, Svennerholm L (1983): Alaproclate: A pharmacokinetic and biochemical study in patients with dementia of the Alzheimer type. Psychopharmacology 80:279–283

    Google Scholar 

  • Bhat RV, Turner SL, Marks MJ, Collins AC (1990): Selective changes in sensitivity to cholinergic agonists and receptor changes elicited by continuous physostigmine infusion. J Pharmacol Exp Ther 255:187–196

    Google Scholar 

  • Bigl V, Arendt T, Fischer S, Werner M, Arendt A (1987): The cholinergic system in aging. Gerontology 33:172–180

    Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982): Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus in senile dementia). Neurology 32:164–168.

    Google Scholar 

  • Botwinick CY, Quartermain D (1974): Recovery from amnesia induced by pre-test injection of monoamine oxidase inhibitors. Pharm Biochem Behav 2:375–379

    Google Scholar 

  • Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, Sims NR, Smith CC, Spillane JE, Esiri MM, Neary D, Snowden JS, Wilcock GK, Davison AN (1983): Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41:266–272

    Google Scholar 

  • Brown MR, Fisher LA, Sawchenko PE, Swanson LW, Vale W (1983): Biological effects of cysteamine: Relationship to somatostatin depletion. Regul Pept 5:163–174

    Google Scholar 

  • Cross AJ (1990): Serotonin in Alzheimer-type dementia and other dementing illnesses. Ann NY Acad Sci 600:405–451

    Google Scholar 

  • Cross AJ, Deakin JFW (1985): Cortical serotonin receptor subtypes after lesions of ascending cholinergic neurons in rat. Neurosci Lett 60:261–265

    Google Scholar 

  • Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE (1983): Monoamine metabolism in senile dementia of Alzheimer’s type. J Neurol Sci 60:383–392

    Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Crosellis JA (1984): Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43:1574–1581

    Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA (1986): The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurohiol Aging 7:3–7

    Google Scholar 

  • Cutler NR, Haxby J, Kay AD, Narang PK, Lesko LJ, Costa JL, Ninos M, Linnoila M, Potter WZ, Renfrew JW, et al. (1985): Evaluation of zimeldine in Alzheimer’s disease. Cognitive and biochemical measures. Arch Neurol 42:744–748

    Google Scholar 

  • Davies P, Terry RD (1981): Cortical somatostatin-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of Alzheimer’s type. Neurobiol Aging 2:9–14

    Google Scholar 

  • Davies P, Katzman R, Terry RD (1980): Reduced somatostatin-like-immunoreactivity in cerebral cortex from cases of Alzheimer’s disease Alzheimer’s senile dementia. Nature (London) 288:279–280

    Google Scholar 

  • Decker MW, Gallager M (1987): Scopolamine-disruption of radial arm maze performance: Modification by noradrenergic depletion. Brain Res 417:59–69

    Google Scholar 

  • Decker MW, McGaugh JL (1991): The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7:151–168

    Google Scholar 

  • Dekker AJAM, Connor DJ, Thal LJ (1991): The role of cholinergic projections from the nucleus basalis in memory. Neurosci Biobehav Rev 15:299–317

    Google Scholar 

  • Dewar D, Graham DI, McCulloch J (1990): 5 HT2 receptors in dementia of Alzheimer type: A quantitative autoradiographic study of frontal cortex and hippocampus. J Neural Transm Park Dis Dement Sect 2:129–137

    Google Scholar 

  • Doucette R, Fisman M, Hachinski VC, Mersky H (1986): Cell loss from the nucleus basalis of Meynert in Alzheimer’s disease. Can J Neurol Sci 13:435–440

    Google Scholar 

  • Egan TM, North RA (1985): Acetylcholine acts on m2-muscarinic receptors to excite rat locus coeruleus neurons. Br J Pharmac 85:733–735

    Google Scholar 

  • Egan TM, Henderson G, North RA, Williams JT (1983): Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurons. J Physiol 345:477–488

    Google Scholar 

  • Engberg G, Svensson TH (1980): Pharmacological analysis of a cholinergic receptor mediated regulation of brain norepinephrine neurons. J Neural Trans 49:137–150

    Google Scholar 

  • Fine A, Dunnett SB, Bjorklund A, Iversen SD (1985): Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease. Proc Natl Acad Sci USA 82:5227–5230

    Google Scholar 

  • Flood JF, Cherkin A (1987): Fluoxetine enhances memory processing in mice. Psychopharmacology 93:36–43

    Google Scholar 

  • Fornal CA, Jacobs BL (1988): Physiological and behavioral correlates of serotonergic single-unit activity. In: Neuronal Serotonin, Osborn NN, Hamon M, eds. New York: John Wiley, pp 305–345

    Google Scholar 

  • Forno LS, Eng LF, Selkoe DJ (1989): Pick bodies in the locus ceruleus. Acta Neuropathol. (Berlin) 79:10–17

    Google Scholar 

  • German DC, White CL, Sparkman DR (1987): Alzheimer’s disease: Neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312

    Google Scholar 

  • Giacobini E (1990): The cholinergic system in Alzheimer disease. Prog Brain Res 84:321–332

    Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986): Nerve growth factor mRNA in peripheral and central rat tissue and in the human central nervous system. Lesion effects in the rat brain and levels in Alzheimer’s disease. Soc Neurosci Abst 12.1:299

    Google Scholar 

  • Gold, PE, Zornetzer SF (1983): The mnemon and its juices: Neuromodulation of memory processes. Behav Neural Biol 38:151–189

    Google Scholar 

  • Gottfries CG (1990a): Disturbance of the 5-hydroxytryptamine metabolism in brains from patients with Alzheimer’s dementia. J Neural Trans [Suppl] 30:33–43

    Google Scholar 

  • Gottfries CG (1990b): Brain monoamines and their metabolites in dementia. Acta Neurol Scand Suppl 129:8–11

    Google Scholar 

  • Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernas SA, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1989): Biochemical changes in dementia disorders of the Alzheimer type (AD/SDAT). Neurobiol Aging 4:261–271

    Google Scholar 

  • Haroutunian V, Barnes E, Davis KL (1985a): Cholinergic modulation of memory in rats. Psychopharmacology 87:266–271

    Google Scholar 

  • Haroutunian V, Kanof P, Davis KL (1985b): Pharmacological alleviation of cholinergic lesions induced memory deficits in rats. Life Sci 37:945–952

    Google Scholar 

  • Haroutunian V, Kanof PD, Davis KL (1989a): Attenuation of nucleus basalis of Meynert lesion-induced cholinergic deficits by nerve growth factor. Brain Res 487:200–203

    Google Scholar 

  • Haroutunian V, Kanof PD, Davis KL (1989b): Interactions of forebrain cholinergic and somatostatinergic systems in the rat. Brain Res 496:98–104

    Google Scholar 

  • Haroutunian V, Kanof PD, Tsuboyama GK, Campbell GA, Davis KL (1986): Animal models of Alzheimer’s disease: Behavior, pharmacology, transplants. Can J Neurol Sci 13:385–393

    Google Scholar 

  • Haroutunian V, Mantin R, Campbell GA, Tsuboyama GK, Davis KL (1987): Cysteamineinduced depletion of central somatostatin-like immunoactivity: Effects on behavior, learning, memory and brain neurochemistry. Brain Res 403:234–242

    Google Scholar 

  • Haroutunian V, Kanof PD, Tsuboyama G, Davis KL (1990a): Restoration of cholinomimetic activity by Clonidine in cholinergic plus noradrenergic lesioned rats. Brain Res 507:261–266

    Google Scholar 

  • Haroutunian V, Mantin R, Kanof PD (1990b): Frontal cortex as the site of action of physostigmine in nbM-lesioned rats. Physiol Behav 47:203–206

    Google Scholar 

  • Haroutunian V, Santucci AC, Davis KL (1990c): Implications of multiple transmitter system lesions for cholinomimetic therapy in Alzheimer’s disese. Prog Brain Res 84:333–346

    Google Scholar 

  • Haroutunian V, Wallace WC, Davis KL (1991): Nucleus basalis lesions and recovery. In: Cholinergic Basis for Alzheimer Therapy, Giacobini E, Becker R, eds. Boston: Birkhäuser, pp 120–125

    Google Scholar 

  • Huygens P, Baratti CM, Gardella JL, Filinger E (1980): Brain catecholamine modifications. The effects on memory facilitation induced by oxotremorine in mice. Psychopharmacology 69:291–294

    Google Scholar 

  • Ichimiya Y, Arai H, Kosaka K, Iizuka R (1986): Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer-type dementia. Acta Neuropathol (Bed) 70:112–116

    Google Scholar 

  • Jansen KL, Faull RL, Dragunow M, Synek BL (1990): Alzheimer’s disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—an autoradiographic study. Neuroscience 39:613–627

    Google Scholar 

  • Kohler C (1984): The distribution of serotonin binding sites in the hippocampal region of the rat brain. An autoradiographic study. Neuroscience 13:667–680

    Google Scholar 

  • Koshimura K, Kato T, Yohyama I, Nakamura S, Kameyama M (1987): Correlation of choline acetyltransferase activity between the nucleus basalis of Meynert and the cerebral cortex. Neurosci Res 4:330–336

    Google Scholar 

  • Lakoski JM, Aghajanian GK (1985): Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus. Neuropharmacology 24:265–273

    Google Scholar 

  • Lewander T, Joh TH, Reis DJ (1977): Tyrosine hydroxylase: Delayed activation in central noradrenergic neurons and induction in adrenal medulla elicited by stimulation of central cholinergic receptors. J PET 200:523–534

    Google Scholar 

  • Madison DV, Nicoll RA (1984): Control of the repetitive discharge of CA1 pyramidal neurons in vitro. J Physiol 354:319–331

    Google Scholar 

  • Mair RG, McEntee WJ (1986): Cognitive enhancement in Korsakoff’s psychosis by Clonidine: A comparison with I-dopa and ephedrine. Psychopharmacology 88:374–380

    Google Scholar 

  • Mandel RJ, Chen AD, Connor DJ, Thal LJ (1989): Continuous physostigmine infusion in rats with excitotoxic lesions of the nucleus basalis magnocellularis: Effects on performance in the water maze task and cortical cholinergic markers. J Pharmacol Exp Ther 251:612–619

    Google Scholar 

  • Mann DM, Lincoln J, Yates PO, Stamp JE, Toper S, Maruyama Y, Oshima T, Nakajima EI (1980): Changes in the monoamine containing neurons of the human CNS in senile dementia. Simultaneous determination of catecholamines in rat brain by reversedphase liquid chromatography with electrochemical detection. Br J Psychiat Life Sci 26:1115–1120

    Google Scholar 

  • Mann DMA, Lincoln J, Yates PO, Stamp JE, Toper S (1983): Changes in the monoamine containing neurones of the human CNS in senile dementia. J Neurol Neurosurg Psychiat 46:96–102

    Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1985): Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures in Alzheimer’s disease. Neurosci Lett 56:51–55

    Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B (1986a): A comparison of nerve cell loss in cortical and subcortical structures in Alzheimer’s disease. J Neurol Neurosurg Psychiat 49:310–312

    Google Scholar 

  • Marcyniuk B, Mann DM, Yates PO (1989): The topography of nerve cell loss from the locus caeruleus in elderly persons. Neurobiol Aging 10:5–9

    Google Scholar 

  • Mason ST (1979): Noradrenaline: Reward or extinction? Neurosci Biobehav Rev 3:1–10

    Google Scholar 

  • Mason ST, Fibiger HC (1979): Possible behavioral function for noradrenaline-acetylcholine interaction in brain. Nature (London) 277:396–397

    Google Scholar 

  • McEntee WJ, Mair RG (1980): Memory enhancement in Korsakoff’s psychosis by Clonidine: Further evidence for a noradrenergic deficit. Ann Neurol 7:466–470

    Google Scholar 

  • McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T (1984): Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology 34:741–745

    Google Scholar 

  • NcNaughton N, Mason ST (1980): The neuropsychology and neuropharmacology of the dorsal ascending noradrenergic bundle—A review. Prog Neurobiol 14:157–219

    Google Scholar 

  • Mitchell IJ, Stuart AM, Slater P, Unwin HP, Crossman AR (1984): Autoradiographic demonstration of 5HT1 binding sites in the primate basal nucleus of Meynert. Eur J Pharmacol 104:189–190

    Google Scholar 

  • Murray CL, Fibiger HC (1985): Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine. Neuroscience 19:1025–1032

    Google Scholar 

  • Normile HJ, Jenden DJ, Kuhn DM, Wolf WA, Altman HJ (1990): Effects of combined serotonin depletion and lesions of the nucleus basalis magnocellularis on acquisition of a complex spatial discrimination task in the rat. Brain Res 536:245–250

    Google Scholar 

  • Ogren SO (1985a): Evidence for a role of brain serotonergic neurotransmission in avoidance learning. Acta Physiol Scand Suppl 544:1–71

    Google Scholar 

  • Ogren SO (1986a): Analysis of the avoidance learning deficit induced by serotonin releasing compound p-chloroamphetamine. Brain Res Bull 16:645–660

    Google Scholar 

  • Ogren SO (1986b): Serotonin receptor involvement in the avoidance learning deficit caused by p-chloroamphetamine-induced serotonin release. Acta Physiol Scand 126:449–462

    Google Scholar 

  • Ogren SO, Johansson C, Magnusson O (1985a): Forebrain serotonergic involvement in avoidance learning. Neurosci Lett 58:305–309

    Google Scholar 

  • Ogren SO, Nordstrom O, Danielsson E, Peterso LL, Bartfai T (1985b): In vivo and in vitro studies on the potentiation of muscarinic receptor stimulation by alaprocite, a selective 5-HT uptake blocker. J Neural Trans 61:1–20

    Google Scholar 

  • Palacios JM, Probst A, Cortes R (1983): The distribution of serotonin receptors in the human brain: High density of [3H]LSD binding sites in the raphe nuclei of the brainstem. Brain Res 274:150–155

    Google Scholar 

  • Palmer AM, Francis PT, Bowen DM, Neary JS, Mann DMA, Snowden JS (1987a): Catecholaminergic neurons assessed ante-mortem in Alzheimer’s disease. Brain Res 414:365–375

    Google Scholar 

  • Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987b): Monoaminergic innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401:231–238

    Google Scholar 

  • Palmer AM, Stratmann GC, Procter AW, Bowen DM (1988): Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Ann Neurol 23:616–620

    Google Scholar 

  • Pazos A, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230

    Google Scholar 

  • Pazos A, Cortes R, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346:231–249

    Google Scholar 

  • Perry EK (1987): Cortical neurotransmitter chemistry in Alzheimer’s disease. In: Psychopharmacology: The Third Generation of Progress, Meltzer HY, ed. New York: Raven Press, pp 887–896

    Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978): Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459

    Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Perry RH, Cross AJ, Crow TJ (1981): Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease. J Neurol Sci 51:279–337

    Google Scholar 

  • Perry EK, Perry RH, Candy JM, Fairbairn AF, Blessed G, Dick DJ, Tomlinson BE (1984): Cortical serotonin-S2 receptor binding abnormalities in patients with Alzheimer’s disease: Comparisons with Parkinson’s disease. Neurosci Lett 51:353–357

    Google Scholar 

  • Pomponi M, Giacobini E, Brufani M (1990): Present state and future development of the therapy of Alzheimer disease. Aging (Milano) 2:125–153

    Google Scholar 

  • Quartermain D, Botwinick CY (1975): Role of biogenic amines in the reversal of cycloheximide-induced amnesia. J Comp Physiol Psychol 88:386–401

    Google Scholar 

  • Quartermain D, Freedmen LS, Botwinick CY, Gutwein BM (1977): Reversal of cycloheximide-induced amnesia by adrenergic receptor stimulation. Physiol Biochem Behav 7:259–267

    Google Scholar 

  • Quartermain D, Judge ME, Leo P (1988): Attenuation of forgetting by pharmacological stimulation of aminergic neurotransmitter systems. Pharm Biochem Behav 30:77–81

    Google Scholar 

  • Quirion R, Richard J, Dam TV (1985): Evidence for the existance of serotonin type 2 receptors on cholinergic terminals in rat cortex. Brain Res 33:345–349

    Google Scholar 

  • Ragawski MA, Aghajanian GK (1980): Norepinephrine and serotonin: Opposit effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp Neurol 69:678–694

    Google Scholar 

  • Reinikainen KJ, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ (1988): A post-mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci 84:101–116

    Google Scholar 

  • Reinikainen KJ, Soininen H, Riekkinen PJ (1990): Neurotransmitter changes in Alzheimer’s disease: Implications to diagnostics and therapy. J Neurosci Res 27:576–586

    Google Scholar 

  • Robinson S (1986): 6-hydroxydopamine lesions of the ventral noradrenergic bundle blocks the effects of amphetamine on hippocampal acetylcholine. Brain Res 397:181–184

    Google Scholar 

  • Robinson SE, Cheney DL, Costa E (1978): Effects of normifensine and other antidepressant drugs on acetylcholine turnover in various regions of rat brain. Naunyn Schmiedebergs Arch Pharmacol 304:263–269

    Google Scholar 

  • Robinson SE, Rice MA, Hambrecht KL (1986): Effect of intrastriatal injection of diisopropylfluorophosphate on acetylcholine, dopamine and serotonin metabolism. J Neurochem 46:1632–1638

    Google Scholar 

  • Rossor MN, Emson PC, Montjoy CQ, Roth M, Iversen LL (1980): Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer’s type. Neurosci Lett 20:373–377

    Google Scholar 

  • Sagar SM, Landry D, Millard WJ, Badger TM, Arnold MA, Martin JB (1982): Depletion of somatostatin-like immunoreactivity in the rat central nervous system by cysteamine. J Neurosci 2:225–231

    Google Scholar 

  • Santucci AC, Kanof PD, Haroutunian V (1990): Serotonergic modulation of cholinergic systems involved in learning and memory in rats. Dementia 1:151–155

    Google Scholar 

  • Saper CB, German DC, White CL (1985): Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: Possible role in cell loss. Neurology 35:1089–1095

    Google Scholar 

  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1986): Biochemical characterization of a-adrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem 47:1294–1301

    Google Scholar 

  • Sparks DL (1989): Aging and Alzheimer’s disease. Altered cortical serotonergic binding. Arch Neurol 46:138–140

    Google Scholar 

  • Sparks DL, DeKosky ST, Markesbery WR (1988): Alzheimer’s disease. Aminergiccholinergic alterations in hypothalamus. Arch Neurol 45:994–999

    Google Scholar 

  • Summers WK, Viesselman JO, Marsh GM, Candelora K (1981): Treatment of Alzheimerlike dementia: Pilot study in twelve patients. Biol. Psychiatr 16:145–153

    Google Scholar 

  • Vecsei L, Kiraly C, Bollok I, Nagy A, Verga J, Penke B, Telegdy G (1984): Comparative studies with somatostatin and cysteamine in different behavioral tests with rats. Pharmacol Biochem Behav 21:833–837

    Google Scholar 

  • Vizi ES (1980): Modulation of cortical release of acetylcholine by noradrenaline released from nerve terminals arising from the rat locus coeruleus. Neuroscience 5:2139–2144

    Google Scholar 

  • Waterhouse BD, Moises HC, Woodward D (1980): Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters. Exper Neurol 69:30–49

    Google Scholar 

  • Waterhouse BD, Moises HC, Woodward D (1981): Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20:907–920

    Google Scholar 

  • Waterhouse BD, Moises HC, Woodward DJ (1986): Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res Bull 17:507–518

    Google Scholar 

  • Wenk GL, English KL (1986): [3H]Ketanserin (serotonin type 2) binding increases in rat cortex following basal forebrain lesions with ibotenic acid. J Neurochem 47:845–850

    Google Scholar 

  • Wenk GL, Olton DS (1987): Basal forebrain cholinergic neurons and Alzheimer’s disease. In: Animal Models of Dementia: A Synaptic Neurochemical Perspective, Coyle JT, ed. New York: Alan R. Liss, pp 81–102

    Google Scholar 

  • Wenk G, Hughey D, Boundy V, Kim A, Walker L, Olton D (1987): Neurotransmitters and memory: Role of cholinergic, serotonergic, and noradrenergic systems. Behav Neurosci 3:325–332

    Google Scholar 

  • Westfall T (1974): Effect of muscarinic agonists on the release of 3H-norepinephrine and 3H-dopamine by potassium and electrical stimulation from rat brain slices. Life Sci 14:1641–1652

    Google Scholar 

  • Whitehouse PJ (1986): Clinical and neurochemical consequences of neuronal loss in the nucleus basalis of Meynert in Parkinson’s disease and Alzheimer’s disease. Adv Neurol 45:393–397

    Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988): The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type. J Neurol Neurosurg Psychiatry 51:842–849

    Google Scholar 

  • Yamamoto T, Hirano A (1985): Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577

    Google Scholar 

  • Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, Ritchie IM, Urquhart A (1983): Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimertype dementia and Down’s syndrome. Brain Res 280:119–126

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Haroutunian, V., Santucci, A.C., Davis, K.L. (1992). Neurotransmitter Interactions and Responsivity to Cholinomimetic Agents. In: Levin, E.D., Decker, M.W., Butcher, L.L. (eds) Neurotransmitter Interactions and Cognitive Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9843-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9843-5_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9845-9

  • Online ISBN: 978-1-4615-9843-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics