Skip to main content

Liposome Targeting to Macrophages: Opportunities for Treatment of Infectious Diseases

  • Chapter
Infections in the Immunocompromised Host

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 202))

Abstract

The central role played by cells of the mononuclear phagocyte system (MPS) such as alveolar macrophages, hepatic Kupffer cells, splenic and lymph node macrophages, tissue histiocytes and circulating blood monocytes in the complex host reaction to neoplastic and infectious diseases has attracted increasing attention during the past 10 years. This interest stems from the experimental studies illustrating that macrophages when appropriately activated* play a major role in host defense against tumors and infectious microorganisms in vivo and also display enhanced tumoricidal and microbicidal activity in vitro 1–3. These observations, coupled with the disappointing results obtained in both clinical and experimental studies with immunologically-specific therapeutic modalities mediated by T and B lymphocytes in cancer immunotherapy has led to a renewed interest in the functions of macrophages and NK cells. Additionally, there is needed a reappraisal of the potential therapeutic benefit of augmenting non-specific host defense mechanisms mediated by mononuclear phagocytes for adjunct therapy of neoplastic and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pick, E. (ed.), Lymphokines, Vol. 3, Academic Press, NY, (1981).

    Google Scholar 

  2. Poste, G., and Fidler, I.J., The pathogenesis of cancer metastasis, Nature, 283:139–146, (1980).

    Article  PubMed  CAS  Google Scholar 

  3. Fidler, I.J., and Poste, G., Macrophase-mediated destruction of malignant tumor cells and new strategies for the therapy of metastatic disease, Springer Semin. Immunopathol., 5:161–174, (1982).

    Article  PubMed  CAS  Google Scholar 

  4. Chirigos, M.A., Mitchell, M., Mastrangelo, M.J., Krim, M. (Eds.), Modulation of Cellular Immunity in Cancer by Immune Modifiers, Raven Press, NY, (1981).

    Google Scholar 

  5. Ehrlich, P., Collected Studies on Immunity, Reprinted, Wiley, NY, Vol. 2, pp. 442–447, (1906).

    Google Scholar 

  6. Gregoriadis, G., Sr., and Trouet, A. (Eds.), Targeting of Drugs, Plenum Press, NY, (1982).

    Google Scholar 

  7. Bruck, S.D. (Ed.), Controlled Drug Delivery, CRC, Boca Raton, (1982).

    Google Scholar 

  8. Gregoriadis, G., and Allison, A.C. (Eds.), Liposomes in Biological Systems, Wiley Interscience, NY, (1980).

    Google Scholar 

  9. Poste, G., and Kirsh, R., Site-specific (targeted) drug delivery in cancer therapy, Biotechnology. 1:869–878, (1983).

    Article  CAS  Google Scholar 

  10. Szoka, F., and Papahadjopoulos, D., Liposomes. Preparation and characterization, in Liposomes: From Physical Structure to Therapeutic Applications, C. G. Knight (Ed.), Elsevier, Amsterdam, pp. 51–82, (1981).

    Google Scholar 

  11. Hauser, H., Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation, Trends Pharm. Sci., 3:274–277, (1982).

    Article  CAS  Google Scholar 

  12. Leserman, L.D., Machy, P., Pevaux, C., and Barbet, J., Antibody-bearing liposomes: targeting in vivo. Biol. Cell, 47:111–116, (1983).

    Google Scholar 

  13. Poste, G., Liposome targeting invivo: problems and opportunities, Biol. Cell. 47:19–30, (1983).

    CAS  Google Scholar 

  14. Poste, G., Kirsh, R., and Koestler, T., The challenge of liposome targeting in vivo, in Liposome Technology, G. Gregoriadis (Ed.), CRC Press, Boca Raton, FLA, pp. 1–28, (1983).

    Google Scholar 

  15. Poste, G., Kirsh, R., Fogler, W.E., and Fidler, I.J., Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery, Cancer Res., 42:1412–1422, (1982).

    PubMed  CAS  Google Scholar 

  16. Scherphof, G.L., Interaction of liposomes with biological fluids and fate of liposomes in vivo. in Liposome Methodology, L.D. Leserman and J. Barbet (Eds.), pp. 79–92, Inserm, Paris, (1982).

    Google Scholar 

  17. Altura, B.M., Reticuloendothelial cells and host defense.

    Google Scholar 

  18. Taylor, R.L., Hilliams, D.M., Craven, P.C., Graybill, J.R., Drutz, P.J., and Magee, N.E., Amphotericin B in liposomes; a novel therapy for histoplasmosis, Am. Rev. Respir. Dis 125:610–611 (1982).

    PubMed  CAS  Google Scholar 

  19. New, R.R.C., Chance, M.L., and Heath, S., The treatment of experimental cutaneous leishmaniasis with liposome-entrapped Pentostam, Parasitol. 83:519–527 (1981).

    Article  CAS  Google Scholar 

  20. Lopez-Berestein, G., Mehta, R., Hopfer, R.L., Mills, K., Kasi, L., Mehta, K., Fainstein, V., Luna, M. Hersh, E.M., and Juliano, R., Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposomne-encapsulated amphotericin B, J. Infect. Dis. 5:939–945 (1983).

    Article  Google Scholar 

  21. Graybill, J.R., Craven, P.C., Taylor, R.L., Hilliams, P.M., and Magee, N.E., KTreatment of murine cryptococcosis with liposome associated amphotericin B, J. Infect. Dis. 145: 748–751 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. Fountain, M.H., Pees, C., and Schultz, R.P., Enhanced intracellular killing of Staphylococcus aureus by canine monocytes treted with liposome containing amikacin, gentamicin, kanamycin, and tobramycin, Current Microbiol. 6:373–376 (1981).

    Article  CAS  Google Scholar 

  23. Alving, C.R., and Steck, E.A., The use of liposome-encapsulated drugs in leishmaniasis, Trends Biochem. Sci. 4:N175–177 (1979).

    Article  CAS  Google Scholar 

  24. Pesiderio, J.V., and Campbell, S.G., Liposome-encapsulated cephalothin in the treatment of experimental murine salmonellosis, RES: Journal of the Reticuloendothelial Society 34:279–287 (1983).

    Google Scholar 

  25. Bodey, G.P., Fungal infections complicating acute leukemia, J. Chron. Dis. 19:667 (1966).

    Article  PubMed  CAS  Google Scholar 

  26. Degregorio, M.W., Lee, N.M.F., Linker, C.A., Jacobs, R.A., and Ries, C.A., Fungal infections in patients with acute leukemia, Am. J. Med. 73:543–548 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. Louria, D.B., and Sen, P., Fungal infections with a particular focus on the compromised host, Del. Med. J. 54:11–19 (1982).

    PubMed  CAS  Google Scholar 

  28. Alexander, P., and Evans, R., Endotoxin and double stranded RNA render macrophages cytotoxic, Nature New Biology 232:76–78 (1971).

    PubMed  CAS  Google Scholar 

  29. Cleveland, R.P., Meltzer, M.S., and Zbar, B., Tumor cytotoxicity in vitro by macrophages from mice infected with Mycobacterium bovis strain BCG, J. Nat. Cancer Inst. 52:1887–1894 (1974).

    PubMed  CAS  Google Scholar 

  30. Scott, M.T., In vivo cortisone sensitivity of nonspecific antitumor activity of Corynebacteria parvum activated mouse peritoneal macrophages, J. Nat. Cancer Inst. 54:789–792 (1975).

    PubMed  CAS  Google Scholar 

  31. Sone, S., and Fidler, I.J., In situ activation of tumoricidal properties in rat alveolar macrophages and rejection of experimental lung metastases by intravenous injections of Nocardia rubra cell wall skeleton, Cancer Immunol. Immunother. 12:203–209 (1982).

    Article  Google Scholar 

  32. Lederer, E., Synthetic immunostimulants derived from the bacterial cell wall, J. Med. Chem. 23:819–825 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. Parant, M., Parant, F., Chedid, L., Yapo, A., Petit, J.F., and Lederer, L., Fate of the synthetic immunoadjuvant, muramyl dipeptide (14C-labelled) in the mouse, Int. J. Immunopharmacol 1:35–41 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. Poste, G., Kirsh, R., and Fidler, I.J., Cell surface receptors for lymphokines, Cell Immunol 44:72–88 (1979).

    Google Scholar 

  35. Papermaster, B.N., Holterman, O.A., and Klein, E., Preliminary observations on tumor regressions induced by local administration of a lymphoid cell culture supernatant fraction in patients with cutaneous metastatic lesions, 5:31–35 (1976).

    CAS  Google Scholar 

  36. Fidler, I.J., and Raz, A., The induction of tumoricidal capacities in mouse and rat macrophages by lymphokines, in Pick, E. (Ed.), Lymphokines, Vol. 3, Academic Press, New York, pp. 345–364 (1981).

    Google Scholar 

  37. Poste, G., and Kirsh, R., Rapid decay of tumoricidal activity and loss of responsiveness to lymphokines in inflammatory macrophages, Cancer Res. 39:2582–2590 (1979).

    PubMed  CAS  Google Scholar 

  38. Poste, G., The tumoricidal properties of inflammatory tissue macrophages and multinucleate giant cells, Am. J. Pathol 96:595–608 (1979).

    PubMed  CAS  Google Scholar 

  39. Poste, G., and Fidler, I.J., Active non-specific immunotherapy of lung metastases by macrophage activating agents encapsulated in liposome, in Optimization of Drug Delivery, A. Benzon, Symposium No. 17, H. Bundgaard, A. Hansen, and H. Kofod (Eds.), Bundgaard, Copenhage, pp. 48–429 (1982).

    Google Scholar 

  40. Koff, W.C., Showalter, S.D., Seniff, D.A., and Hampar, B., Lysis of Herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma, Infection and Immunity 42:1067–1072 (1983).

    PubMed  CAS  Google Scholar 

  41. Koff, W.C., Fidler, I.J,, Showalter, S.D., Chakrabarty, M.K., Hampar, B., Ceccorulli, L.M., and Kleinerman, E.S., Human monocytes activated by immunomodulators in liposomes lyse herpesvirus-infected but not normal cells, Science 224:1007–1009 (1984).

    CAS  Google Scholar 

  42. Alving, C.R., and Richards, R.L., Immunological aspects of liposomes, in The Liposomes., M. Ostro, ed., M. Dekker, New York (In Press) (1983).

    Google Scholar 

  43. Federal Register, Food and Drug Administration, Proposed new drug, antibiotic and biologic drug product regulations, 48:26720–749 (June 9, 1983) (1983).

    Google Scholar 

  44. Juliano, R.L., Lopez-Berenstein, G., Mehta, R., Hopfer, R., Mehta, K., and Kasi, L., Pharmacokinetic and therapeutic consequences of liposomal drug delivery: fluorodeoxyuridine and amphotericin B as examples, Biol. Cell 47: 39–46 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kirsh, R., Poste, G. (1986). Liposome Targeting to Macrophages: Opportunities for Treatment of Infectious Diseases. In: Actor, P., Evangelista, A., Poupard, J., Hinks, E. (eds) Infections in the Immunocompromised Host. Advances in Experimental Medicine and Biology, vol 202. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1259-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1259-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1261-1

  • Online ISBN: 978-1-4684-1259-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics