Skip to main content

Superconducting Strips for Microvertex Detectors

  • Chapter
New Technologies for Supercolliders

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 57))

Abstract

One of the main physics motivations for the future large hadron colliders, the SSC in the U.S.A. and the LHC proposed at CERN, is the study of the mass generation mechanisms for particles. The Higgs mechanism requires new massive bosons, the search of which leads to the requirement of very high luminosities at the proposed multi-TeV collision energies. The design parameters for the planned LHC, for example, basing on such searches, aim at luminosities of (2 – 4) ·1034 cm;s−1 at the maximum colliding beam energies of 8 TeV. This, combined with the large multiplicity at high energies, will entail severe problems for any existing vertex detector. Radiation damage, spatial resolution, timing resolution and readout are among the most evident. It has been proposed that these problems could be solved by applying superconducting microstrip detectors, made of suitable radiation-hard materials, such as niobium nitride (NbN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ruller-Albenque, Effets d’Irradiation dans les Superconducteurs, Laboratoire des Solides Irradiés Preprint (1987).

    Google Scholar 

  2. A. K. Drukier, T. A. Girard, R. Gross, R. P. Huebener, U. Klass, A. D. Silva, M. L. Gros and B. Turrell, “Tests of Radiation Hardness of Superconducting Particle Detectors”, in Low Temperature Detectors for Neutrinos and Dark Matter II, Annecy-le Vieux 1988; L. Gonzalez-Mestres and D. Perret-Gallix, ed., Editions Frontieres, Gif-sur-Yvette (1988) p. 357.

    Google Scholar 

  3. N. K. Sherman, Phvs. Rev. Lett. 8:438 (1962).

    Article  ADS  Google Scholar 

  4. D. E. Spiel, R. W. Boom and E. C. Crittenden, Appl. Phvs. Lett. 7:292 (1965).

    Article  ADS  Google Scholar 

  5. E. C. Crittenden and D. E. Spiel, Superconducting Thin-Film Detector of Nuclear Particles, J. Appl. Phvs. 42:3182 (1971).

    Article  ADS  Google Scholar 

  6. K. W. Shepard, W. Y. Lai and J. E. Mercereau, J. Appl. Phys. 46:4664 (1975).

    Article  ADS  Google Scholar 

  7. N. Ishihara, R. Arai and T. Kohriki, Proposed High-Resolution Vertex Detector Using Superconductive Thin Strips, Jap. J. Appl. Phvs. 23:735 (1984).

    Article  ADS  Google Scholar 

  8. R. G. Wagner and K. E. Gray, “Superconducting Thin Film Vertex Detector for SSC Applications”, in Proc. Int. Workshop on Superconductive Particle Detectors, Turin 1987; World Scientific, Singapore (1988) p. 204.

    Google Scholar 

  9. A. Gabutti, K. E. Gray and R. G. Wagner, Granular-aluminum superconducting detector for 6 keV X-rays and 2.2 MeV beta sources, Nucl. Instrum. Methods A289:274 (1989).

    ADS  Google Scholar 

  10. B. Strehl, T. Niinikoski, A. Rijllart, K. Winter and M. Caria, Observation of Subnanosecond Transients in a Superconducting Microstrip Exposed to Minimum Ionizing Radiation, Phys. Lett. B242:285 (1990).

    ADS  Google Scholar 

  11. T. O. Niinikoski, A. Rijllart, B. Strehl, K. Winter and M. Caria, “Superconducting Strips for Microvertex Detectors”, in Proc. 25th Int. Conf. on High Energy Physics, Singapore 1990; K. K. Phua and Y. Yamaguchi, ed., World Scientific, Singapore (1991).

    Google Scholar 

  12. W. J. Skocpol, M. R. Beasley and M. Tinkham, J. Appl. Phys. 45:4054 (1974).

    Article  ADS  Google Scholar 

  13. R. F. Broom and E. H. Rhoderick, Br. J. Appl. Phvs. 11:292 (1960).

    Article  ADS  Google Scholar 

  14. K. E. Gray, R. T. Kampwirth, J. F. Zasadzinski and S. P. Ducharme, Thermal Propagation and Stability in Superconducting Films, J. Phvs. F: Met. Phys. 13:405 (1983).

    Article  ADS  Google Scholar 

  15. J. Baixeras, P. Andro and M. Cazabat, Transport Properties of Superconducting and Non-Superconducting Sputtered Thin Films of NbN, IEEE Trans. Mag. 11:1464 (1975).

    Article  ADS  Google Scholar 

  16. E. M. Lifschitz and L. P. Pitaevskii, “Statistical physics”, Pergamon Press, Oxford (1980).

    Google Scholar 

  17. K. Komenou, T. Yamashita and Y. Onodera, Energy Gap Measurement of Niobium Nitride, Phvs. Lett. A28:335 (1968).

    Article  ADS  Google Scholar 

  18. P. Marksteiner, P. Weinberger, A. Nickel, R. Zeller and P. H. Dederichs, Electronic Structure of Substoichiometric Carbides and Nitrides of Zirconium and Niobium, Phys. Rev. B33:6709 (1986).

    ADS  Google Scholar 

  19. A. Rothwarf and B. N. Taylor, Phvs. Rev. Lett. 19:27 (1967).

    Article  ADS  Google Scholar 

  20. K. E. Gray, “Nonequilibrium Superconductivity for Particle Detectors”, in Proc. Int. Workshop on Superconductive Particle Detectors, Turin 1987; World Scientific, Singapore (1988) p. 1.

    Google Scholar 

  21. J. R. Gavaler, A. T. Santhanam, A. I. Braginski, M. Ashkin and M. A. Janocko, Dimensional Effects on Current and Field Properties in NbN Films, IEEE Trans. Mag. 17: 573 (1981).

    Article  ADS  Google Scholar 

  22. R. T. Kampwirth and K. E. Gray, NbN Materials Development for Practical Superconducting Devices, IEEE Trans Mag. 17: 565 (1981).

    Article  ADS  Google Scholar 

  23. O. V. Lounasmaa, “Experimental principles and methods below 1 K”, Academic Press, New York (1974).

    Google Scholar 

  24. A. Gabutti, R. G. Wagner, K. E. Gray, R. T. Kampwirth and R. H. Ono, Superconducting Detector for Minimum Ionizing Particles, Nucl. Instrum. Methods A278:425 (1989).

    ADS  Google Scholar 

  25. R. L. Kautz, Picosecond Pulses in Superconducting Striplines, J. Appl. Phys. 49:308 (1978).

    Article  ADS  Google Scholar 

  26. D. C. Mattis and J. Bardeen, Theory of the Anomalous Skin Effect in Normal and Superconducting Metals, Phvs. Rev. 111:412 (1958).

    Article  ADS  MATH  Google Scholar 

  27. M. Tinkham, “Introduction to Superconductivity”, McGraw-Hill, New York (1975).

    Google Scholar 

  28. R. L. Kautz, Picosecond Pulses on Superconducting Striplines, J. Appl. Phys. 49:308 (1978).

    Article  ADS  Google Scholar 

  29. W. J. Gallagher, C.-C. Chi, I. N. Duling III, D. Grischkowsky, N. J. Halas, M. B. Ketchen and A. W. Kleinsasser, Subpicosecond Optoelectronic Study of Resistive and Superconsuctive Transmission Lines, Appl. Phys. Lett. 50:350 (1987).

    Article  ADS  Google Scholar 

  30. J. Matisoo, Overview of Josephson Technology Logic and Memory, IBM J. Res. Develop. (1980).

    Google Scholar 

  31. T. R. Gheewala, Design of 2.5-Micrometer Josephson Curent Injection Logic (CIL), IBM J. Res. Develop. 24:130 (1980).

    Article  Google Scholar 

  32. T. Ypsilantis, private communication (1990).

    Google Scholar 

  33. Particle Data Group, Phys. Lett. B204:62 (1988).

    Google Scholar 

  34. T. O. Niinikoski, “Recent developments in polarized targets at CERN”, in High Energy Physics with Polarized Beams and Polarized Targets, Argonne, 111. 1978.

    Google Scholar 

  35. G. H. Thomas, ed., AIP Conference Proceedings No. 51, American Institute of Physics, New York (1979) p. 62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Niinikoski, T.O., Rijllart, A., Strehl, B., Winter, K., Caria, M. (1991). Superconducting Strips for Microvertex Detectors. In: Cifarelli, L., Ypsilantis, T. (eds) New Technologies for Supercolliders. Ettore Majorana International Science Series, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1360-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1360-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1362-5

  • Online ISBN: 978-1-4684-1360-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics