Skip to main content

The (Extended) Ternary Complex Model ([E]TCM) for G Protein Activation

  • Chapter
Signal Transduction by G Protein-Coupled Receptors

Abstract

Many reviews have been written in which the mechanism of G protein activation is described. Several authors including Birnbaumer1–3 Chabre et al,4 Conklin and Bourne,5 Gilman,6,7 Rodbell8 and Stryer9 describe in detail how G proteins may be activated by GPCRs; extensive lists of references are presented loc. cit. I this subsection we summarize the most important findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnbauer L, Mattera R, Yatani A at al. Recent advances in the understanding of multiple roles of G proteins in coupling of receptors to ionic channels and other effectors. In: Moss J, Vaughan M, eds. ADP-ribosylating toxins and G proteins, Insights into signal transduction. Washington DC: Am Soc Microbiol, 1990:225–266.

    Google Scholar 

  2. Birnbauer L. G proteins and the modulation of potassium channels. In: Weston AH, Hamilton ThC, eds. Potassium channel modulators. Oxford: Blackwell Scientific Publications, 1993:44–75.

    Google Scholar 

  3. Birnbauer L, Birnbaumer M. Signal transduction by G proteins: 1994 edition. J Receptor & Signal Transduction Research 1995; 15:213–252.

    Article  Google Scholar 

  4. Chabre, M, Antonny B, Vuong TM. The transducin cycle in the phototransduction cascade. NATO ASI Series, Series H 1991; 52:207–220.

    CAS  Google Scholar 

  5. Conklin BR, Bourne HR Structural elements of Gα subunits that interact with Gβγ, receptors and effectors. Cell 1993; 73:631–641.

    Article  PubMed  CAS  Google Scholar 

  6. Gilman G. G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 1987: 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  7. Gilman G. G-Proteine und die Regulation der Adenylat-Cyclase (Nobel-Vortrag). Angew Chem 1995; 107:1533–1548.

    Article  Google Scholar 

  8. Rodbell M. Signaltransduktion: Die Entwicklung einer Theorie (Nobel-Vortrag). Angew Chem 1995; 107:1549–1558.

    Article  Google Scholar 

  9. Stryer. L, Cyclic GMP cascade of vision. Ann Rev Neurosci 1986; 9:87–119.

    Article  PubMed  CAS  Google Scholar 

  10. Costa, Ogino Y, Munson PJ et al. Drug efficacy at guanine nucle-otide-binding regulatory protein-linked receptors: Thermodynamic interpretation of negative antagonism and receptor activity in the absence of ligand. Mol Pharmacol 1992; 41:549–560.

    PubMed  CAS  Google Scholar 

  11. DeLean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 1980; 255:7108–7117.

    PubMed  Google Scholar 

  12. Samama P, Cotecchia S, Costa T et al. A mutation-induced activated state of the β2 adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268:4625–4636.

    PubMed  CAS  Google Scholar 

  13. Leff P The two-state model of receptor activation. Trends Pharmacol Sci 1995; 16:89–97.

    Article  PubMed  CAS  Google Scholar 

  14. Leeb-Lndberg LMF, Mathis SA, Herzig MCS. Antagonists of bradykinin that stabilize a G protein-uncoupled state of the B2 receptor act as inverse agonists in rat myometrial cells. J Biol Chem 1994; 269:25970–25973.

    Google Scholar 

  15. Strade CD, Dixon RAF, Cheung AH et al. Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonists affinity. J Biol Chem 1987; 262:16439–16443.

    Google Scholar 

  16. Vuong M, Chabre M, Stryer L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature 1984; 311:659–661.

    Article  PubMed  CAS  Google Scholar 

  17. Vuong M, Chabre M. Subsecond deactivation of transducin by endogenous GTP hydrolysis. Nature 1990; 346:71–74.

    Article  PubMed  CAS  Google Scholar 

  18. Fung B-K, Hurley JB, Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 1981; 78:152–156.

    Article  PubMed  CAS  Google Scholar 

  19. Schütz W, Freissmuth M. Reverse intrinsic activity of antagonists on G-protein-coupled receptors. Trends Pharmacol Sci 1992; 13:376–379.

    Article  PubMed  Google Scholar 

  20. Millign G, Bond RA, Lee M. Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 1995; 16:10–13.

    Article  Google Scholar 

  21. Parma, J, Duprez L, Van Sande J et al. Constitutive active receptors as a disease-causing mechanism. Mol Cell Endocrinol 1994; 100:159–162.

    Article  PubMed  CAS  Google Scholar 

  22. Smit M, Timmerman H, Alewijnse AE et al. Inverse agonism of histamine H2 antagonists leads to antagonist-induced upregulation of the histamine H2 receptor. Proc Natl Acad Sci USA 1996; 93:6802–6807.

    Article  PubMed  CAS  Google Scholar 

  23. Coruzz G, Bertaccini G. Increased parietal cell sensitivity after chronic treatment with ranitidine in the conscious cat. Agents and Actions 1989; 28:215–217

    Article  Google Scholar 

  24. Nwokol CU, Smith JTL, Sawyer AM et al. Rebound intragastric hyperacidity after abrupt withdrawal of histamine H2 receptor blockade. Gutt 1991; 32:1455–1460.

    Article  Google Scholar 

  25. Merki S, Wilder-Smith CH. Do continuous infusions of omeprazole and ranitidine retain their effect with prolonged dosing? Gastroenterology 1994; 106:60–64.

    PubMed  CAS  Google Scholar 

  26. Collin S. Molecular structure of G protein-coupled receptors and regulation of their expression. Drug News & Perspectives 1993; 6:480–487.

    Google Scholar 

  27. Donnely D, Findlay JBC, Blundell TL. The evolution and structure of aminergic G protein-coupled receptors. Receptors and Channels 1994; 2:61–78.

    Google Scholar 

  28. Hibert MF, Trumpp-Kallmeyer S, Hoflack J et al. This is not a G protein-coupled receptor. Trends Pharmacol Sci 1993; 14:7–12.

    Article  PubMed  CAS  Google Scholar 

  29. Jung H Windhaber R, Palm D et al. NMR and circular dichroism studies of synthetic peptides derived from the third intracellular loop of the β adrenoceptor. FEBS Lett 1995; 358:133–136.

    Article  PubMed  CAS  Google Scholar 

  30. Lee NH Kerlavage AR. Molecular biology of G protein-coupled receptors. Drug News & Perspectives 1993; 6:488–497.

    Google Scholar 

  31. Oliveia L, Paiva ACM, Vriend G. A common motif in G protein-coupled seven transmembrane helix receptors. J Comp-Aided Mol Design 1993; 7:649–658.

    Article  Google Scholar 

  32. Weinstin H. Computational simulations of molecular structure, dynamics and signal transduction in biological systems: Mechanistic implications for ecological physical chemistry. In: Bonati L, Cosentino U, Lasagni M et al, eds. Trends in ecological physical chemistry, Proceedings of the 2nd international workshop on ecological physical chemistry. Amsterdam: Elsevier, 1993:1–16.

    Google Scholar 

  33. Oliveia L, Paiva ACM, Sander C et al. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci 1994; 15:170–172.

    Article  Google Scholar 

  34. Timms, D, Wilkinson AJ, Kelly DR et al. Interactions of Tyr377 in a ligand-activation model of signal transmission through β1 adrenoceptor α-helices. Int J Quant Chem: Quant Biol Symp 1992; 19:197–215.

    Article  CAS  Google Scholar 

  35. Timms, D, Wilkinson AJ, Kelly DR et al. Ligand-activated transmembrane proton transfer in β1 adrenergic and m2 muscarinic receptors. Receptors and Channels 1994; 2:107–119.

    PubMed  CAS  Google Scholar 

  36. Hausdoff WP, Hnatowich M, O’Dowd BF et al. A mutation of the β2 adrenergic receptor impairs agonist activation of adenylate cyclase without affecting high affinity agonist binding. J Biol Chem 1990; 265:1388–1393.

    Google Scholar 

  37. Bursten ES, Spalding TA, Bräuner-Osborne H et al. Constitutive activation of muscarinic receptors by the G protein Gq. FEBS Lett 1995; 363:261–263.

    Article  Google Scholar 

  38. Ernst P, Hofmann KP, Sakmar TP. Characterization of rhodop-sin mutants that bind transducin but fail to induce GTP nucleotide uptake. J Biol Chem 1995; 270:10580–10586.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nederkoorn, P.H.J., Timmerman, H., den Kelder, G.M.DO. (1997). The (Extended) Ternary Complex Model ([E]TCM) for G Protein Activation. In: Signal Transduction by G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1407-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1407-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1409-7

  • Online ISBN: 978-1-4684-1407-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics