Skip to main content

Biological, Photochemical, and Spectroscopic Applications of Lasers

  • Chapter
Photochemical and Photobiological Reviews

Abstract

Not more than 5 years ago, it was common to refer to the laser as an “instrument in search of a problem.” Here was this marvelous device that could generate electromagnetic radiation that was naturally monochromatic (+0.05 nm) anywhere from 250 nm through the visible and infrared regions of the spectrum, and both the peak intensities and the average intensities were thousands of orders of magnitude higher than obtainable with the older classical sources. In addition, it was possible to generate ultrashort pulses (below 10-12 s) of this intense, monochromatic radiation. Furthermore, because of the physical mechanism involved in stimulated emission of radiation, and the design of laser cavities, the output beam was always plane polarized and virtually nondivergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, B., Banerjee, R., and Lindqvist, L., 1974, The kinetics of conformational changes in hemoglobin, studied by laser photolysis, Proc. Natl. Acad. Sci. USA 71:558–562.

    Google Scholar 

  • Ambartzumian, R. V., and Letokhov, V. S., 1972, Selective two-step (STS) photoionization of atoms and photodissociation of molecules by laser radiation, Appl. Opt. 11:354–358.

    Google Scholar 

  • Amy, R. J., Storb, R., Fauconnier, B., and Wertz, R. K., 1967, Ruby laser microirradiation of single tissue cells vitally stained with Janus Green B. I. Effects observed with the phase contrast microscope, Exp. Cell Res. 45:361–373.

    Google Scholar 

  • Anderson, R. J., and Ricchio, S. G., 1973, Luminescent rise times of inorganic phosphors excited by high intensity ultraviolet light, Appl. Opt. 12:2751–2758.

    Google Scholar 

  • Andreoni, A., Benetti, P., and Sacchi, C. A., 1975a, Subnanosecond pulses from a single-cavity dye laser, Appl. Phys. 7:61–64.

    Google Scholar 

  • Andreoni, A., Sacchi, C. A., Cova, S., Bottiroli, G., and Prenna, G., 1975b, Pulsed tunable laser in cytofluorometry: A study of the fluorescence pattern of chromosomes, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 413–423, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Arrio, B., Chevallier, J., Jullien, M., Yon, J., and Calvayrac, R., 1974, Description by quasi elastic laser light scattering of a biological preparation: Sarcoplasmic reticulum vesicles, J. Membr. Biol. 18:95–112.

    Google Scholar 

  • Asher, I. M., Rothschild, K. J., and Stanley, H. E., 1974, Raman spectroscopic study of the Valinomycin-KSCN complex, J. Mol. Biol. 89:205–222.

    Google Scholar 

  • Ault, B. S., Howard, W. F., Jr., and Andrews, L., 1975, Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices, J. Mol. Spectrosc. 55:217–228.

    Google Scholar 

  • Baba, K., 1970, Selective injury of mitochondria with Janus Green B and ruby laser light: Enzyme morphological and ultrastructural study, Acta Pathol. Jpn. 20(1):59–78.

    Google Scholar 

  • Beatrice, E. S., Harding-Barlow, I., and Glick, D., 1969, Electric spark cross-excitation in laser microprobe-emission spectroscopy for samples of 10–25 μ diameter, Appl. Spectrosc. 23:257–259.

    Google Scholar 

  • Behringer, J., 1967, Observed resonance Raman spectra, in: Raman Spectroscopy, Vol. 1 (H. A. Szymanski, ed.), pp. 168–223, Plenum Press, New York.

    Google Scholar 

  • Bensasson, R., and Land, E. J., 1971, Triplet-triplet extinction coefficients via energy transfer, Trans. Faraday Soc. 67:1904–1915.

    Google Scholar 

  • Bensasson, R., Chachaty, C., Land, E. J., and Salet, C., 1972, Nanosecond irradiation studies of biological molecules. I. Coenzyme Q6 (ubiquinone-30), Photochem. Photobiol. 16:27–37.

    Google Scholar 

  • Bergmann, K., and Demtroder, W., 1972, Inelastic collision cross section of excited molecules. II. Asymmetries in the cross section for rotational transitions in the Na2(B1IIu) state, J. Phys. B 5:1386–1395.

    Google Scholar 

  • Bergmann, K., Demtroder, W., Stock, M., and Vogl, G., 1974, Inelastic collision cross section of excited molecules. IV. Rotational transitions for very high rotational quantum numbers and temperature effects in Na2(B1IIu), J. Phys. B 7:2036–2046.

    Google Scholar 

  • Berman, M. R., and Zare, R. N., 1975, Laser fluorescence analysis of chromatograms: Subnanogram detection of aflatoxins, Anal. Chem. 47:1200–1201.

    Google Scholar 

  • Berns, M. W., 1974a, Recent progress with laser microbeams, Int. Rev. Cytol. 39:383–411.

    Google Scholar 

  • Berns, M. W., 1974b, Microbeams and Partial Cell Irradiation, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Berns, M. W., 1974c, Laser microirradiation of chromosomes, Cold Spring Harbor Symp. Quant. Biol. 38:165–174.

    Google Scholar 

  • Berns, M. W., 1974d, Directed chromosome loss by laser microirradiation, Science 186:700–705.

    Google Scholar 

  • Berns, M. W., and Cheng, W. K., 1971, Are chromosome secondary constrictions nucleolar organizers: A re-evaluation using a laser microbeam, Exp. Cell Res. 69:185–192.

    Google Scholar 

  • Berns, M. W., and Rattner, J. B., 1975, Irradiation of the centriolar region in mitotic Potorous cells with a laser microbeam, J. Cell Biol. 67:30a.

    Google Scholar 

  • Berns, M. W., and Salet, C., 1972, Laser microbeams for partial cell irradiation, Int. Rev. Cytol. 33:131–156.

    Google Scholar 

  • Berns, M. W., Olson, R. S., and Rounds, D. E., 1969, Argon laser microirradiation of nucleoli, J. Cell Biol. 43:621–626.

    Google Scholar 

  • Berns, M. W., Matsui, S., Olson, R. S., and Rounds, D. E., 1970a, Enzyme inactivation with ultraviolet laser energy (2650 Angstroms), Science 169:1215–1217.

    Google Scholar 

  • Berns, M. W., El-Kadi, S., Oison, R. S., and Rounds, D. E., 1970b, Laser photosensitization and metabolic inhibition of tissue culture cells treated with quinacrine hydrochloride, Life Sci. 9:1061–1069.

    Google Scholar 

  • Berns, M. W., Cheng, W. K., Floyd, A. D., and Ohnuki, Y., 1971, Chromosome lesions produced with an argon laser microbeam without dye sensitization, Science 171:903–905.

    Google Scholar 

  • Bessis, M., and Ter-Pogossian, M., 1965, Micropuncture of cells by means of a laser beam, Ann. N.Y. Acad. Sci. 122:689–694.

    Google Scholar 

  • Bessis, M., Gires, F., and Mayer, G., 1962, Irradiation des organites à l’aide d’un laser à rubis, C.R. Acad. Sci. 255:1010–1012.

    Google Scholar 

  • Brinkley, L., and Berns, M. W., 1974, Laser microdissection of actinomycin D segregated nucleoli, Exp. Cell Res. 87:417–422.

    Google Scholar 

  • Brunner, H., Mayer, A., and Sussner, H., 1972, Resonance Raman scattering on the haem group of oxy-and deoxyhaemoglobin, J. Mol. Biol. 70:153–156.

    Google Scholar 

  • Cameron, L., Burton, A. L., and Hiatt, C. W., 1972, Photodynamic action of laser light on cells, in: Concepts in Radiation Cell Biology (G. L. Whitson, ed.), pp. 245–258, Academic Press, New York.

    Google Scholar 

  • Chance, B., and Erecinska, M., 1971, Flow flash kinetics of the cytochrome a 3-oxygen reaction in coupled and uncoupled mitochondria using the liquid dye laser, Arch. Biochem. Biophys. 143:675–687.

    Google Scholar 

  • Chance, B., and Schoener, B., 1964, Abst. 8th Ann. Mtg. Biophys. Soc. FD9.

    Google Scholar 

  • Chance, B., Schleyer, H., and Legallais, V., 1963, Activation of electron transfer in a Chlamydomonas mutant by light impulses from an optical maser, in: Microalgae and Photosynthetic Bacteria (Japan Soc. Plant Physiol., ed.), pp. 337–346, University of Tokyo Press, Tokyo, Japan.

    Google Scholar 

  • Chance, B., McCray, J. A., and Bunkenburg, J., 1970, Fast spectrophotometric measurement of H+ changes in Chromatium chromatophores activated by a liquid dye laser, Nature (London) 225:705–708.

    Google Scholar 

  • Crissman, H. A., and Steinkamp, J. A., 1973, Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations, J. Cell Biol. 59:766–771.

    Google Scholar 

  • Délèze, J., 1970, The recovery of resting potential and input resistance in sheep heart injured by knife or laser, J. Physiol. 208:547–562.

    Google Scholar 

  • Demtroder, W., and Stock, M., 1975, Molecular constants and potential curves of Na2 from laser-induced fluorescence, J. Mol. Spectrosc. 55:476–486.

    Google Scholar 

  • DeVault, D., and Chance, B., 1966, Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling, Biophys. J. 6:825–847.

    Google Scholar 

  • Dubin, S. B., 1972, Measurement of translational and rotational diffusion coefficients by laser light scattering, in: Methods in Enzymology, Vol. 26 (C. M. W. Hirs and S. N. Timasheff, eds.), Part C, pp. 119–174, Academic Press, New York.

    Google Scholar 

  • Dubin, S. B., Lunacek, J. H., and Benedek, G. B., 1967. Observation of the spectrum of light scattered by solution of biological macromolecules, Proc. Natl. Acad. Sci. USA 57:1164–1171.

    Google Scholar 

  • Edlow, J., Fine, S., Vawter, G. F., Jockin, H., and Klein, E., 1965, Laser irradiation: Effect on rat embryo and fetus in utero, Life Sci. 4:615–623.

    Google Scholar 

  • Erfurth, S., and Peticolas, W. L., 1975, Melting and premelting phenomenon in DNA by laser Raman scattering, Biopolymers 14:247–264.

    Google Scholar 

  • Feir, D., and Lough, J. W., Jr., 1969, Physiology of the large milkweed bug after laser irradiation, Comp. Biochem. Physiol. 28:759–764.

    Google Scholar 

  • Fisher, M. M., and Weiss, K., 1974, Laser photolysis of retinal and its protonated and unprotonated n-butylamine Schiff base, Photochem. Photobiol. 20:423–432.

    Google Scholar 

  • Floyd, R. A., Keyhani, E., and Chance, B., 1971, Membrane structure and function. II. Alterations in the photo-induced absorption changes after treatment of isolated chloroplasts with large pulses of the ruby laser, Arch. Biochem. Biophys. 146:627–634.

    Google Scholar 

  • Fujime, S., Maruyama, M., and Asakura, S., 1972, Flexural rigidity of bacterial flagella studied by quasielastic scattering of laser light, J. Mol. Biol. 68:347–359.

    Google Scholar 

  • Gee, R. A., and Truscott, T. G., 1968, Fluorescence spectra of chlorophyll excited by a continuous gas laser, Chem. Commun. 15:839–841.

    Google Scholar 

  • Gill, D., Heyde, M. E., and Rimai, L., 1971, Raman spectrum of the 11cis isomer of retinaldehyde, J. Am. Chem. Soc. 93:6288–6289.

    Google Scholar 

  • Glick, D., 1966, The laser microprobe. Its use for elemental analysis in histochemistry, J. Histochem. Cytochem. 14:862–868.

    Google Scholar 

  • Glick, D., 1969, Cytochemical analysis by laser microprobe-emission spectroscopy, Ann. N.Y. Acad. Sci. 157:265–274.

    Google Scholar 

  • Glick, D., and Marien, K. W., 1975, Potential for clinical use of the analytical laser microprobe for element measurement, Clin. Chem. 21:1238–1244.

    Google Scholar 

  • Glick, D., and Rosan, R. C., 1966, Laser microprobe for elemental microanalysis, application in histochemistry, Microchem. J. 10:393–401.

    Google Scholar 

  • Goldman, L., Rockwell, R. J., Jr., Naprstek, Z., Siler, V.E., Hoefer, R., Hobeika, C., Hishimoto, C., Polanyi, T., and Bredmeier, H. C., 1970, Some parameters of high output CO2 laser experimental surgery, Nature (London) 228:1344–1345.

    Google Scholar 

  • Goldstein, S. F., Holwill, M. E. J., and Silvester, N. R., 1970, The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti, J. Exp. Biol. 53:401–409.

    Google Scholar 

  • Gordon, T. E., Bishop, K., Carter, C. H., and Connolly, M. J., 1968, Laser blockage or delay of cell division at prophase in human leukocyte cultures, J. Dent. Res. 47:171.

    Google Scholar 

  • Hall, R. R., Beach, A. D., Baker, E., and Morison, P. C. A., 1971, Incision of tissue by carbon dioxide laser, Nature (London) 232:131–132.

    Google Scholar 

  • Ham, W. T., Jr., Mueller, H. A., Goldman, A. I., Newnam, B. E., Holland, L. M., and Kuwabara, T., 1974, Ocular hazard from picosecond pulses of Nd:YAG laser radiation, Science 185:362–363.

    Google Scholar 

  • Herczegh, M., Mester, E., and Ronto, G., 1971, Examination of laser-inactivation on T7 phages, Acta Biochim. Biophys. Acad. Sci. Hung. 6(1):41–44.

    Google Scholar 

  • Heyde, M. E., Rimai, L., Kilponen, R. G., and Gill, D., 1972, Resonance-enhanced Raman spectra of iodine complexes with amylose and polyvinyl alcohol, and of some iodine-containing trihalides, J. Am. Chem. Soc. 94:5222–5227.

    Google Scholar 

  • Hillenkamp, F., Unsold, E., Kaufmann, R., and Nitsche, R., 1975, Laser microprobe mass analysis of organic materials, Nature (London) 256:119–120.

    Google Scholar 

  • Hoye, R. C., Ketcham, A. S., and Riggle, G. C., 1967, The air-borne dissemination of viable tumor by high-energy neodymium laser, Life Sci. 6:119–125.

    Google Scholar 

  • Inaba, H., and Kobayashi, T., 1969, Laser-Raman radar for chemical analysis of polluted air, Nature (London) 224:170–172.

    Google Scholar 

  • Ippen, E. P., and Shank, C. V., 1975, Subpicosecond spectroscopy with a mode-locked CW dye laser, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 293–302, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Jamieson, C. W., Litwin, M. S., Longo, S. E., and Krementz, E. T., 1969, Enhancement of melanoma cell culture growth rate by ruby laser radiation, Life Sci. 8:101–106.

    Google Scholar 

  • Jortner, J., and Berry, R. S., 1968, Radiationless transitions and molecular quantum beats, J. Chem. Phys. 48:2757–2766.

    Google Scholar 

  • Junge, W., and DeVault, D., 1975, Symmetry, orientation and rotational mobility of heme A3 of cytochrome-c-oxidase in the inner membrane of mitochondria, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 439–447, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Katan, M. B., Giling, L.J., and van Voorst, J. D. W., 1971, pH dependence of the transient absorptions on the flash photolysis of 3-methyllumiflavin, Biochim. Biophys. Acta 234:242–248.

    Google Scholar 

  • Kaufmann, K. J., Dutton, P. L., Netzel, T. L., Leigh, J. S., and Rentzepis, P. M., 1975, Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation, Science 188:1301–1304.

    Google Scholar 

  • Keyhani, E., Floyd, R. A., and Chance, B., 1971, Membrane structure and function. I. An electron microscope study of the alteration induced by laser irradiation on the chloroplast lamellar membranes, Arch. Biochem. Biophys. 146:618–626.

    Google Scholar 

  • Klar, H., 1973, Theory of collision induced rotational energy transfer in the π state of diatomic molecules, J. Phys. B 6:2139–2149.

    Google Scholar 

  • Kolar, J., Babicky, A., and Blabla, J., 1969, Some effects of laser upon the bones, Experientia 25:365–366.

    Google Scholar 

  • Kraemer, P. M., Deaven, L. L., Crissman, H. A., Steinkamp, J. A., and Petersen, D. F., 1974, On the nature of heteroploidy, Cold Spring Harbor Symp. Quant. Biol. 38:133–144.

    Google Scholar 

  • Lamotte, M., Dewey, H. J., Keller, R. A., and Ritter, J. J., 1975a, Laser induced photochemical enrichment of chlorine isotopes, Chem. Phys. Lett. 30:165–170.

    Google Scholar 

  • Lamotte, M., Dewey, H. J., Ritter, J. J., and Keller, R. A., 1975 b, Laser induced photochemical enrichment of chlorine isotopes, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 153–162, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Leone, S. R., and Wodarczyk, F. J., 1974, Laser-excited electronic-to-vibrational energy transfer from bromine (42P1/2) to hydrogen chloride and hydrogen bromide, J. Chem. Phys. 60:314–315.

    Google Scholar 

  • Letokhov, V. S., 1973, Use of lasers to control selective chemical reactions, Science 180:451–458.

    Google Scholar 

  • Letokhov, V. S., and Ambartzumian, R. V., 1971, Selective two-step (STS) photoionization of atoms and photodissociation of molecules by laser radiation, IEEE J. Quantum Electron. 7:305–306.

    Google Scholar 

  • Lewis, A., and Spoonhower, J., 1974, Tunable laser resonance Raman spectroscopy in biology, in: Spectroscopy in Biology and Chemistry (S. Yip and S. Chen, eds.), pp. 347–376, Academic Press, New York.

    Google Scholar 

  • Lewis, A., Spoonhower, J., Bogomolni, R., Lozier, R., and Stoeckenius, W., 1974, Tunable laser resonance Raman spectroscopy of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 71:4462–4466.

    Google Scholar 

  • Lewis, A., Nelson, N., and Racker, E., 1975, Laser Raman spectroscopy as a mechanistic probe of the phosphate transfer from adenosine triphosphate in a model system, Biochemistry 14:1532–1535.

    Google Scholar 

  • Litwin, M. S., and Earle, K. M. (eds.), 1965, Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Fed. Proc, Suppl. 14, Vol. 24, No. 1, Part III.

    Google Scholar 

  • Liu, D. D.-S., Datta, S., and Zare, R. N., 1975, Laser separation of chlorine isotopes. The photochemical reaction of electronically excited iodine monochloride with halogenated olefins. J. Am. Chem. Soc. 97:2557–2558.

    Google Scholar 

  • Lytle, F. E., and Kelsey, M.S., 1974, Cavity-dumped argon-ion laser as an excitation source in time-resolved fluorimetry, Anal. Chem. 46:855–860.

    Google Scholar 

  • Mathis, P., Vermeglio, A., and Haveman, J., 1975, Primary reactions of photosynthesis in green plants. A study of photosystem-2 at low temperature, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 465–474, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Matsui, S., Rounds, D. E., and Olson, R. S., 1971, The effect of laser power at 2650 A on deoxyribonucleic acid, Life Sci. 10:217–221.

    Google Scholar 

  • Mayer, S. W., Kwok, M. A., Gross, R. W., and Spencer, D. J., 1970, Isotope separation with the CW hydrogen fluoride laser, Appl. Phys. Lett. 17:516–519.

    Google Scholar 

  • McKinnel, R. G., Mims, M. F., and Reed, L. A., 1969, Laser ablation of maternal chromosomes in eggs of Rana pipiens, Z. Zellforsch. Mikrosk. Anat. 93:30–35.

    Google Scholar 

  • Mendelsohn, R., 1973, Resonance Raman spectroscopy of the photoreceptor-like pigment of Halobacterium halobium, Nature (London) 243:22–24.

    Google Scholar 

  • Moore, C. B., and Zittel, P. F., 1973, State-selected kinetics from laser-excited fluorescence, Science 182:541–546.

    Google Scholar 

  • Netzel, T. L., Rentzepis, P. M., and Leigh, J., 1973, Picosecond kinetics of reaction centers containing bacteriochlorophyll, Science 182:238–241.

    Google Scholar 

  • Nicholls, D. M., Petryshyn, R., and Warner, L., 1974, Laser irradiation induces increased activity of liver elongation factor 1, Radiat. Res. 60:98–107.

    Google Scholar 

  • Novak, J. R., and Windsor, M. W., 1967, Laser photolysis and spectroscopy in the nanosecond time range: Excited singlet state absorption in coronene, J. Chem. Phys. 47:3075–3076.

    Google Scholar 

  • Ohnuki, Y., Olson, R. S., Rounds, D. E., and Berns, M. W., 1972, Laser microbeam irradiation of the juxtanucleolar region of prophase nucleolar chromosomes, Exp. Cell Res. 71:132–144.

    Google Scholar 

  • Okigaki, T., and Rounds, D. E., 1967, Effect of laser radiation on mitosis, Chromosome Info. Serv. No.8, pp. 16-19.

    Google Scholar 

  • Paleg, L. G., and Aspinall, D., 1970, Field control of plant growth and development through the laser activation of phytochrome, Nature (London) 228:970–973.

    Google Scholar 

  • Pao, Y.-H., and Rentzepis, P. M., 1965, Multiphoton absorption and optical-harmonic generation in highly absorbing molecular crystals, J. Chem. Phys. 43:1281–1286.

    Google Scholar 

  • Rattner, J. B., and Berns, M. W., 1974, Light and electron microscopy of laser microirradiated chromosomes, J. Cell Biol. 62:526–533.

    Google Scholar 

  • Rentzepis, P. M., 1968, Lasers in chemistry, Photochem. Photobiol. 8:579–588.

    Google Scholar 

  • Rimai, L., Kilponen, R. G., and Gill, D., 1970, Resonance-enhanced Raman spectra of visual pigments in intact bovine retinas at low temperatures, Biochem. Biophys. Res. Commun. 41:492–497.

    Google Scholar 

  • Rimai, L., Gill, D., and Parsons, J. L., 1971a, Raman spectra of dilute solutions of some stereoisomes of vitamin A type molecules. J. Am. Chem. Soc. 93:1353–1357.

    Google Scholar 

  • Rimai, L., Heyde, M. E., Heller, H. C., and Gill, D., 1971 b, Raman excitation profiles as probes for inaccessible electronic levels in molecules: Retinal, retinol and naphthalene, Chem. Phys. Lett. 10:207–211.

    Google Scholar 

  • Rosenfeld, T., Alchalal, A., and Ottolenghi, M., 1972, Nanosecond laser photolysis of rhodopsin in solution, Nature (London) 240:482–483.

    Google Scholar 

  • Rothschild, K. J., and Stanley, H. E., 1974, Raman spectroscopic investigation of Gramicidin A conformations, Science 185:616–618.

    Google Scholar 

  • Rounds, D. E., 1965, Effects of laser radiation on cell cultures, Fed. Proc. Suppl. 14, 24(1):S116–S121.

    Google Scholar 

  • Rounds, D. E., Olson, R. S., and Johnson, F. M., 1965a, The laser as a potential tool for cell research, J. Cell Biol. 27:191–197.

    Google Scholar 

  • Rounds, D. E., Olson, R. S., and Johnson, F. M., 1965b, The effect of the laser on cellular respiration, IEEE/NEREM Rec. 7:106–108.

    Google Scholar 

  • Rounds, D. E., Chamberlain, E. C., and Okigaki, T., 1965c, Laser radiation of tissue cultures, Ann. N.Y. Acad. Sci. 122:713–721.

    Google Scholar 

  • Rounds, D. E., Olson, R. S., and Johnson, F. M., 1966, Two photon absorption in reduced nicotinamide-adenine denucleotide (NADH), NEREM Rec. 8:158–159.

    Google Scholar 

  • Rounds, D. E., Olson, R. S., and Johnson, F. M., 1967a, The effect of the laser on cellular respiration, Z. Zellforsch. Mikrosk. Anat. 87:193–198.

    Google Scholar 

  • Rounds, D. E., Olson, R. S., and Johnson, F. M., 19676, Wavelength specificity of laser-induced biological damage, IEEE 9th Ann. Symp. Electron, Ion, Laser Beam Technology, pp. 363-370.

    Google Scholar 

  • Sacchi, C. A., Svelto, O., and Prenna, G., 1974, Pulsed tunable lasers in cytofluorometry, Histochem. J. 6:251–258.

    Google Scholar 

  • Salmeen, I., Rimai, L., Gill, D., Yamamoto, T., Palmer, G., Hartzell, C. R., and Beinert, H., 1973, Resonance Raman spectroscopy of cytochrome c oxidase and electron transport particles with excitation near the Soret band, Biochem. Biophys. Res. Commun. 52(3):1100–1107.

    Google Scholar 

  • Schleyer, H., and Chance, B., 1962, Abst. 6th Ann. Mtg. Biophys. Soc, FC9.

    Google Scholar 

  • Spiro, T. G., and Strekas, T. C., 1972, Resonance Raman spectra of hemoglobin and cytochrome c: Inverse polarization and vibronic scattering, Proc. Natl. Acad. Sci. USA 69:2622–2626.

    Google Scholar 

  • Strekas, T. C., and Spiro, T. G., 1972, Hemoglobin: Resonance Raman spectra, Biochim. Biophys. Acta 263:830–833.

    Google Scholar 

  • Thomas, G. J., Jr., 1970, Raman spectral studies of nucleic acids in laser-excited spectra of ribosomal RNA, Biochim. Biophys. Acta 213:417–423.

    Google Scholar 

  • Tsuboi, M., Takahashi, S., Muraishi, S., Kajiura, T., and Nishimura, S., 1971, Raman spectrum of a transfer RNA, Science 174:1142–1144.

    Google Scholar 

  • Vacek, K., Vavrinec, E., and Kalousek, I., 1973, Fluorescence of chlorophyll a excited by a He-Ne laser, Photochem. Photobiol. 17:63–64.

    Google Scholar 

  • Visser, A. J. W. G., van Ommen, G. J., van Ark, G., Muller, F., and van Voorst, J. D. W., 1974, Laser photolysis of 3-methyllumiflavin, Photochem. Photobiol. 20:227–232.

    Google Scholar 

  • Whipple, H. E. (ed.), 1965, The Laser, Ann. N.Y. Acad. Sci., Vol. 122.

    Google Scholar 

  • Wilde, W. H. A., 1965, Laser effects on two insects, Can. Entomol. 97:88–92.

    Google Scholar 

  • Wilde, W. H. A., 1967, Laser effects on some phytophagous arthropods and their hosts, Ann. Entomol. Soc. Am. 60:204–207.

    Google Scholar 

  • Wilson, R. M., and Wunderly, S. W., 1974a, Laser-induced formation of 1,2,4-trioxans: The trapping oxetan precursors with molecular oxygen, J. Chem. Soc. Chem. Comm. 12:461–462.

    Google Scholar 

  • Wilson, R. M., and Wunderly, S. W., 1974b, Sulfur dioxide trapping of photochemically generated 1,4-biradicals, J. Am. Chem. Soc. 96:7350–7351.

    Google Scholar 

  • Wilson, R. M., Gardner, E. J., Elder, R. C., Squire, R. H., and Florian, L. R., 1974, The laser initiated oxidative photoaddition of p-benzoquinone to cyclooctatetraene, J. Am. Chem. Soc. 96:2955–2963.

    Google Scholar 

  • Windsor, M. W., Rockley, M. G., Cogdell, R. J., and Parson, W. W., 1975, Picosecond flash photolysis and spectroscopy and kinetics of intermediates in bacterial photosynthesis, in: Lasers in Physical Chemistry and Biophysics (J. Joussot-Dubien, ed.), pp. 369–376, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Wolbarsht, M. L. (ed.), 1971, Laser Applications in Medicine and Biology, Vol. 1, Plenum Press, New York.

    Google Scholar 

  • Wolbarsht, M. L. (ed.), 1974, Laser Applications in Medicine and Biology, Vol. 2, Plenum Press, New York.

    Google Scholar 

  • Yamamoto, T., Palmer, G., Gill D., Salmeen, I. T., and Rimai, L., 1973, The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy, J. Biol. Chem. 248:5211–5213.

    Google Scholar 

  • Yu, N.-T., and East, E. J., 1975, Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions, J. Biol. Chem. 250:2196–2202.

    Google Scholar 

  • Yu, N.-T., Liu, C. S., and O’Shea, D. C., 1972, Laser Raman spectroscopy and the conformation of insulin and proinsulin, J. Mol. Biol. 70:117–132.

    Google Scholar 

  • Yu, N.-T., Lin, T.-S., and Tu, A. T., 1975, Laser Raman scattering of neurotoxins isolated from the venoms of sea snakes Lapemis hardwickii and Enhydrina schistosa, J. Biol. Chem. 250:1782–1785.

    Google Scholar 

  • Zitter, R. N., Lau, R. A., and Wills, K. S., 1975, Infrared laser induced reaction of CF2Cl2, Am. Chem. Soc. 97:2578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Berns, M.W. (1977). Biological, Photochemical, and Spectroscopic Applications of Lasers. In: Smith, K.C. (eds) Photochemical and Photobiological Reviews. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2577-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2577-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2579-6

  • Online ISBN: 978-1-4684-2577-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics