Skip to main content

Morphology and Phase Relationships of Low-Molecular-Weight Polystyrene in Poly (Methyl Methacrylate) and Methyl Methacrylate/ Styrene Copolymers

  • Chapter
Polymer Alloys II

Part of the book series: Polymer Science and Technology ((POLS,volume 11))

Abstract

Over the past twenty years or more there has been widespread interest in various kinds of multicomponent polymer systems, including polyblends, block copolymers, and segmented elastomers. More recently, considerable interest has also been focused on questions concerning polymer/polymer compatibility and incompatibility in these systems, and also in related systems such as interpenetrating networks and alloys. Among this diverse group of multicomponent and in some cases multiphase polymers, one that has received perhaps the most overall attention, because of the combination of its great commercial importance and scientific interest, has been the so-called high-impact plastics and resins. Typically, these multiphase polyblends are based on a dispersed, rubbery phase such as polybutadiene which is contained in a glassy, continuous matrix such as polystyrene. The presence of the second, dispersed phase imparts added impact strength, as measured, for example, by an Izod impact apparatus, to the composite above that possessed by the homopolymer polystyrene itself; and it is this enhancement, of course, which leads to the commercial importance of polyblends of this type. In the development of high-impact plastics and the subsequent study of their physical and mechanical properties, a considerable body of information and data has appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, M. W. Beijerinck, Kolloid Z. Z. Polym. 7: 16 (1910).

    Google Scholar 

  2. See, for example, A. Dobry and F. Boyer-Kawenoki, J. Polym. Sci. 2: 90 (1947).

    Article  Google Scholar 

  3. N. A. J. Platzer, ed., 1971, “Multicomponent Polymer Systems” (Adv. Chem. Ser. 99 ), American Chemical Society, Washington, D.C.

    Google Scholar 

  4. L. H. Sperling, ed., 1974, “Recent Advances In Polymer Blends, Grafts, and Blocks,” Plenum, New York.

    Google Scholar 

  5. N. A. J. Platzer, ed., 1975, “Copolymers, Polyblends, and Composites” (Adv. Chem. Ser. 142 ), American Chemical Society, Washington, D.C.

    Google Scholar 

  6. J. A. Manson and L. H. Sperling, 1976, “Polymer Blends and Composites,” Plenum, New York.

    Google Scholar 

  7. D. R. Paul and S. Newman, eds., 1978, “Polymer Blends,” Vols. I and II, Academic Press, New York.

    Google Scholar 

  8. S. L. Cooper and G. M. Estes, eds., 1979, “Multiphase Polymers” (Adv. Chem. Ser. 176 ), Americal Chemical Society, Washington, D C.

    Google Scholar 

  9. G. C. Claver, Jr. and E. H. Merz, 0ff. Dig. Fed. Paint Varn. Prod. Clubs, 28: 858 (1956).

    CAS  Google Scholar 

  10. P. A. Traylor, Anal. Chem., 33: 1629 (1961).

    Article  CAS  Google Scholar 

  11. J. Mann, R. J. Bird, and G. Rooney, Macromol. Chem., 90: 207 (1966).

    Article  CAS  Google Scholar 

  12. H. Keskkula and P. A. Traylor, J. Appl. Polym. Sci., 11: 2361 (1967).

    Article  CAS  Google Scholar 

  13. K. Kato, Jpn. Plastics, 2 (2): 6 (1968).

    CAS  Google Scholar 

  14. M. Matsuo, Jpn. Plastics, 2 (3): 6 (1968).

    CAS  Google Scholar 

  15. R. N. Haward and I. Brough, Polymer, 10: 724 (1969).

    Article  CAS  Google Scholar 

  16. H. Keskkula, Appl. Polym. Symp., 15: 51 (1970).

    Google Scholar 

  17. R. J. Williams and R. W. A. Hudson, Polymer, 8: 643 (1967).

    Article  CAS  Google Scholar 

  18. C. B. Bucknall and R. R. Smith, Polymer, 6: 437 (1965).

    Article  CAS  Google Scholar 

  19. M. Matsuo, Polym. Eng. Sci., 9: 206 (1969).

    CAS  Google Scholar 

  20. M. Baer, J. Appl. Polym. Sci., 16: 1109 (1972).

    CAS  Google Scholar 

  21. J. D. Moore, Polymer, 12: 478 (1971).

    Article  CAS  Google Scholar 

  22. G. E. Molau, J. Polym. Sci., Part A, 3: 1267 (1965).

    CAS  Google Scholar 

  23. Ibid., 4235.

    Google Scholar 

  24. G. E. Molau, J. Polym. Sci., Part B, 3: 1007 (1965).

    CAS  Google Scholar 

  25. G. E. Molau and H. Keskkula, J. Polym. Sci., Part A-1, 4: 1595 (1966).

    Article  CAS  Google Scholar 

  26. G. E. Molau, W. M. Wittbrodt, and V. E. Meyer, J. Polym. Sci., 13: 2735 (1969).

    CAS  Google Scholar 

  27. G. E. Molau, Kolloid Z. Z. Polym., 238: 493 (1970).

    Article  CAS  Google Scholar 

  28. B. W. Bender, J. Appl. Polym. Sci., 9: 2887 (1965).

    CAS  Google Scholar 

  29. R. L. Kruse, in Ref. 5 above, pp. 141–147.

    Google Scholar 

  30. For a recent review, see D. R. Paul and J. W. Barlow, in Ref. 8 above, pp. 315–335.

    Google Scholar 

  31. D. J. Massa, in Ref. 8 above, pp. 433–442.

    Google Scholar 

  32. R. R. Parent and E. V. Thompson, Polym. Prepr., 18 (2): 507 (1977).

    Google Scholar 

  33. R. R. Parent and E. V. Thompson, J. Polym. Sci., Polymer Physics Edition, 16: 1829 (1978).

    Article  CAS  Google Scholar 

  34. R. R. Parent and E. V, Thompson, Polym. Prepr., 19 (1): 180 (1978).

    CAS  Google Scholar 

  35. R. R. Parent and E. V. Thompson, in Ref. 8 above, pp. 381–411.

    Google Scholar 

  36. E. V. Thompson, Org. Coat. Plast. Chem., 40: 751 (1979).

    CAS  Google Scholar 

  37. See, for example, (a) J. P. Berry, J. Polym. Sci., Part C, 3:91 (1963); (b) R. N. Haward and J. Mann, Proc. R. Soc. London Ser. A, 282:120 (1964); (c) M. J. Doyle, A. Maranci, E. Orowan, F. R. S. Stork and S. T. Stork, ibid., 329:137 (1972); and (d) P. Beahan, M. Bevis, and D. Hull, Polymer, 14: 96 (1973).

    Google Scholar 

  38. See, for example, (a) A. Chapiro, 1962, “Radiation Chemistry of Polymeric Systems,” Interscience, New York, pp$1509–512; and (b) E. V. Thompson, J. Polym. Sci., Part B, 3: 675 (1965).

    Google Scholar 

  39. For a discussion of this point, see (a) Ref. 21 and (b) D. M. Schwartz, J. Microsc., 96 (1): 25 (1972).

    Google Scholar 

  40. R. J. Kern and R. J. Slocombe, J. Polym. Sci., 15: 183 (1955).

    Article  CAS  Google Scholar 

  41. T. R. Paxton, J. Appl. Polym. Sci., 7: 1499 (1963).

    CAS  Google Scholar 

  42. R. L. Scott, J. Chem. Phys., 17: 279 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Thompson, E.V. (1980). Morphology and Phase Relationships of Low-Molecular-Weight Polystyrene in Poly (Methyl Methacrylate) and Methyl Methacrylate/ Styrene Copolymers. In: Klempner, D., Frisch, K.C. (eds) Polymer Alloys II. Polymer Science and Technology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3629-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3629-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3631-0

  • Online ISBN: 978-1-4684-3629-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics