Skip to main content

Microwave Dispersive Bistability in a Confocal Fabry-Perot Microwave Cavity

  • Chapter
Optical Bistability

Abstract

The behaviour of a Fabry-Perot transmission cavity containing a two-level absorber is derived as a function of the incident power and of the resonantor and absorber parameters by taking into account the spatially averaged absorption coefficient of the gas. The state equation so obtained exhibits a bistable behaviour. The transmittance of a microwave cavity filled with ammonia gas and tuned at the frequency of the (3,3) inversion line of ammonia is investigated experimentally as a function of the frequency of the incident em wave and gas pressure. Good quantitative agreement is found between the theoretical description and the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kastler, Appl. Opt. 1, 17 (1962).

    Article  ADS  Google Scholar 

  2. H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976); T. N. C. Venkatesan and S. L. McCall, Appl. Phys. Lett. 30, 282 (1977).

    Article  ADS  Google Scholar 

  3. D. Grischkowsky, J. Opt. Soc. Amer. 68, 641 (1978).

    ADS  Google Scholar 

  4. T. Bischofberger and Y. R. Shen, Appl. Phys. Lett. 32, 156 (1978); Opt. Lett. 4, 40 (1979).

    Article  ADS  Google Scholar 

  5. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner and W. Wiegman, Appl. Phys. Lett. 35, 451 (1979); D. A. Miller, S. D. Smith and A. Johnston, Appl. Phys. Lett. 35, 658 (1979).

    Article  ADS  Google Scholar 

  6. P. W. Smith and E. H. Turner, Appl. Phys. Lett. 30, 280 (1977); P. W. Smith, I. P. Kaminov, P. J. Maloney and L. W. Stulz, Appl. Phys. Lett. 33, 24 (1978) and 34, 62 (1979); E. Garmire, S. D. Allen, J. Marburger and C. M. Verber, Opt. Lett. 3, 69 (1978); A. Feldman, Opt. Lett. 4., 115 (1979).

    Article  ADS  Google Scholar 

  7. W. J. Sandle and A. Gallagher, Digest of Technical Papers, XI IQEC, Boston 23-26 June 1980, IEEE J. Quantum Electron. QE-16, 656 (1980); R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle and D. M. Warrington, Phys. Rev. (in press); W. J. Sandle and A. Gallagher, Phys. Rev. (in press).

    Google Scholar 

  8. R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 517 (1978); R. Bonifacio, M. Gronchi and L. A. Lugiato, Nuovo Cimento 53B, 311 (1979); R. Bonifacio, L. A. Lugiato and M. Gronchi, in “Laser Spectroscopy IV” Proc. Int. Conf. at Rottach-Egern, Germany, Eds. H. Walther and K. W. Rothe (Springer-Verlag, Berlin, 1979) p. 426.

    Article  Google Scholar 

  9. G. P. Agrawal and H. J. Carmichael, Phys. Rev. A19, 2074 (1979); C. W. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979).

    MathSciNet  ADS  Google Scholar 

  10. H. J. Carmichael and J. A. Hermann, Zeits Phys. (in press).

    Google Scholar 

  11. G. Boudouris and P. Chenevier, Circuits pour ondes guidees (Dunod, Paris, 1975).

    Google Scholar 

  12. H. Statz and C. L. Tang, J. Appl. Phys. 36, 1816 (1965); T. Li and J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).

    Article  ADS  Google Scholar 

  13. G. D. Boyd and J. P. Gordon, Bell Syst. Tech. Journ. 40, 489 (1961).

    Google Scholar 

  14. A. Battaglia, A. Gozzini and G. Boudouris, Nuovo Cimento 69B, 121 (1970).

    ADS  Google Scholar 

  15. In the now standard definitions in the literature7−10 the state equation involves the normalized input transmitted powers, i. e., in our notation the quantities aY and aX.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Arimondo, E., Gozzini, A., Lovitch, L., Pistelli, E. (1981). Microwave Dispersive Bistability in a Confocal Fabry-Perot Microwave Cavity. In: Bowden, C.M., Ciftan, M., Robl, H.R. (eds) Optical Bistability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3941-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3941-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3943-4

  • Online ISBN: 978-1-4684-3941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics