Skip to main content

Cell Growth and Nuclear DNA Increase by Endoreduplication and Differential DNA Replication

  • Chapter
Cell Growth

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 38))

Abstract

Somatic variations in the amount of nuclear DNA due to somatic polyploidization and differential DNA replication are events, which occur much more frequently than thought by many biologists and biochemists. This might be, in part, because there is particular interest in the genetic information of the DNA rather than on its “nucleotypical” (1) or “nucleoskeletal” effects (2). Actually, it is widely believed that the genome is an extremely stable constant, and that the genetic information stored in the nucleus is identical in all cells of an individual (dogma of DNA constancy). Classical cytologists, however, discovered already in 1939 the process of endomitosis (3), and somewhat later that of DNA endoreduplication (4). Recently, it was shown in a review that some kind of somatic polyploidy can be found in nearly every taxon investigated (5), and that often up to 70% of the cells of an organism may be polyploid (6). Hence, we should no longer ignore this fact, but search for the biological significance of somatic DNA increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D. Bennett, Brookhaven Symp. Biol., 25: 344–366 (1973).

    Google Scholar 

  2. T. Cavalier-Smith, J. Cell Sci., 34: 247–278 (1978).

    PubMed  CAS  Google Scholar 

  3. L. Geitler, Chromosoma, 1: 1–22 (1939).

    Article  Google Scholar 

  4. A. Levan and T.S. Hauschka, J. Natl. Cancer Inst. 14: 1–43 (1953).

    PubMed  CAS  Google Scholar 

  5. W. Nagl, “Endopolyploidy and Polyteny in Differentiation and Evolution”, North-Holland, Amsterdam (1978).

    Google Scholar 

  6. B. Frisch and W. Nagl, Plant Syst. Evol., 131: 261–276 (1979).

    Article  CAS  Google Scholar 

  7. B. Wright, Trends Biochem. Res., 4: N110–N111 (1979).

    Article  CAS  Google Scholar 

  8. W. Nagl, in: “Genome and Chromatin: Organization, Evolution, Function”, W. Nagl, V. Hemleben and F. Ehrendorfer, editors, p. 3–25, Springer, Vienna-New York (1979).

    Chapter  Google Scholar 

  9. F. D’Amato, Caryologia, 17: 41–52 (1964).

    Google Scholar 

  10. E. Tschermak-Woess, in: Handbuch der Allgemeinen Pathologie, H.W. Altmann, et al., editors, p. 569–625, Springer, Berlin-Heidelberg-New York (1971).

    Google Scholar 

  11. F. D’amato, “Nuclear Cytology in Relation to Development” Cambridge University Press, New York (1977).

    Google Scholar 

  12. W. Nagl, Ann. Rev. Plant Physiol., 27: 39–69 (1976).

    Article  CAS  Google Scholar 

  13. V. Ya Brodsky, I.V. Uryvaeva, “Cell Polyploidy: Its Relation to Growth and Differentiation” Academic Press, New York (1977).

    Google Scholar 

  14. W. Nagl, in: “Encyclopedia of Plant Physiology”, Vol. 16, B. Parthier and D. Boulter, editors, Springer, Berlin- Heidelberg-New York (in press)

    Google Scholar 

  15. K. Carniel, Oesterr.Bot.Z., 110: 145–176 (1963).

    Article  Google Scholar 

  16. V.Ya. Brodsky and I.V. Uryvaeva, Intern. Rev. Cytol. 50: 275–332 (1977).

    Article  CAS  Google Scholar 

  17. W. Nagl, Zelkern und Zellzyklen. Ulmer, Stuttgart (1976).

    Google Scholar 

  18. E. Heitz, Ber. Deutsch. Bot. Ges., 47: 274–284 (1929).

    Google Scholar 

  19. L. Geitler, Ergebn. Biol., 18: 1–54 (1941).

    Article  Google Scholar 

  20. P.W. Barlow, Protoplasma, 90: 381–391 (1976).

    Article  PubMed  CAS  Google Scholar 

  21. W. Nagl, Protoplasma, 91: 389–407 (1977).

    Article  PubMed  CAS  Google Scholar 

  22. M. Buiatti, in: “Plant Cell, Tissue, and Organ Culture”, J. Reinert and S. Bajaj, editors, p. 358–374, Springer, Berlin-Heidelberg-New York (1977).

    Google Scholar 

  23. W. Nagl, V. Hemleben and F. Ehrendorfer, editors “Genome and Chromatin: Organization, Evolution and Function” Springer, Vienna-New York (1979).

    Book  Google Scholar 

  24. W. Nagl, Progr. Bot. 39: 132–152 (1977).

    CAS  Google Scholar 

  25. A. Lima-de-Faria, Cold Spring Harb. Symp. Quant. Biol., 38: 559–571 (1974).

    Article  PubMed  CAS  Google Scholar 

  26. W. Nagl, in: “Tissue Culture and Plant Science 1974”, H.E. Street, editor, p. 19–42, Academic Press, New York, (1974).

    Google Scholar 

  27. W. Nagl, Cytobios, 5: 145–154 (1972).

    CAS  Google Scholar 

  28. W. Nagl, J. Hendon and W. Rucker, Cell Diff., 1: 229–237 (1972).

    Article  CAS  Google Scholar 

  29. D. Schweizer and W. Nagl, Exptl. Cell Res., 98: 411–423 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. W. Nagl and W. Rucker, Nucleic Acids Res., 3: 2033–2039 (1976).

    PubMed  CAS  Google Scholar 

  31. A. Brito-da-Cunha, C. Pavan, J.S. Morgante and M.C. Garrido, Genetics Suppl., 61: 335–349 (1969).

    Google Scholar 

  32. L. Walter, Chromosoma, 41: 327–360 (1973).

    Article  PubMed  CAS  Google Scholar 

  33. J. Balsamo, J.M. Hierro, and F.J.S. Lara, Cell Diff., 2: 119–130 (1973).

    Article  CAS  Google Scholar 

  34. R.J. Britten, E.H. Davidson, Science, 165: 349–357 (1969).

    Article  PubMed  CAS  Google Scholar 

  35. M.F. Bonaldo, R.V. Santelli, and F.J.S. Lara, Cell, 17: 827–833 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. C.M. Strom, and A. Dorfman, Proc. Natl. Acad. Sci. US, 73: 3428–3432 (1976).

    Article  CAS  Google Scholar 

  37. C.M. Strom, M. Moscona, and A. Dorfman, Proc. Natl. Acad. Sci. US, 75: 4451–4454 (1978).

    Article  CAS  Google Scholar 

  38. F.W. Alt, R.E. Kellems, J.R. Bertino and R.T. Schimke, J. Biol. Chem. 253: 1357–1370 (1978).

    PubMed  CAS  Google Scholar 

  39. R.J. Kaufman, P.C.. Brown, and R.T. Schimke, Proc. Natl. Acad. Sci. US, 76: 5669–5673 (1979).

    Article  CAS  Google Scholar 

  40. B.J. Dolnick, R.J. Berenson, J.R. Bertino, R.J. Kaufman, J.H. Nunberg and R.T. Schimke, J. Cell Biol., 83: 394–402 (1979).

    Article  PubMed  CAS  Google Scholar 

  41. A.C. Spradling, and A.P. Mahowald, Proc. Natl. Acad. Sci. US, 77: 1080–1100 (1980).

    Article  Google Scholar 

  42. W. Nagl, The Nucleus, 20: 10–27 (1977).

    CAS  Google Scholar 

  43. W. Nagl, Chromosomes Today, 6: 151–152 (1977).

    Google Scholar 

  44. W. Nagl, Nature, 261: 614–615 (1976).

    Article  PubMed  CAS  Google Scholar 

  45. P.W. Barlow, Protoplasma, 90: 381–391 (1976).

    Article  PubMed  CAS  Google Scholar 

  46. L.S. Evans, J. Van’t Hof, Amer. J. Bot., 62: 1060–1064 (1975).

    Article  Google Scholar 

  47. W. Nagl, Z. Pflanzenphysiol., 95: 283–314 (1979).

    CAS  Google Scholar 

  48. C.R. Partanen, Intern. Rev. Cytol., 15: 215–243 (1963).

    Article  CAS  Google Scholar 

  49. Th. Butterfass, Mittlg. Max-Planck-Ges., 1: 47–58 (1966).

    Google Scholar 

  50. W.F. Doolittle, and C. Spaienza, Nature, 284: 601–603 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. L.E. Orgel and F.C.H. Crick, Nature, 284: 604–607 (1980).

    Article  PubMed  CAS  Google Scholar 

  52. S.A. Endow, and J.G. Gall, Chromosoma, 50: 175–192 (1975).

    Article  PubMed  CAS  Google Scholar 

  53. W. Nagl, Z. Pflanzenphysiol., 85: 45–51 (1977).

    Google Scholar 

  54. P.J. Gartner, and W. Nagl, Planta xx,xx–xx (1980).

    Google Scholar 

  55. C.A. Nciolini, in: Chromatin Structure and Function, C.A. Nicolini, editor, p. 613–666, Plenum Press, New York (1979).

    Chapter  Google Scholar 

  56. I. Prigogine, “Thermodynamics of Irreversible Processes” Wiley-Interscience, New York (1955).

    Google Scholar 

  57. M. Eigen, and P. Schuster, “The Hypercycle” Springer, Berlin-Heidelberg-New York (1978).

    Google Scholar 

  58. P.O.P. Ts’o, “The Molecular Biology of the Mammalian Genetic Apparatus” North-Holland, Amsterdam (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Nagl, W. (1982). Cell Growth and Nuclear DNA Increase by Endoreduplication and Differential DNA Replication. In: Nicolini, C. (eds) Cell Growth. NATO Advanced Study Institutes Series, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4046-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4046-1_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4048-5

  • Online ISBN: 978-1-4684-4046-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics