Skip to main content

Stimulated Phosphatidylinositol Turnover A Brief Appraisal

  • Chapter
Contemporary Metabolism

Abstract

The phospholipid phosphatidylinositol (Fig. 1) (PI) is ubiquitous in animal tissues and occurs as a minor component (10 ± 5%; White, 1973) of the lipid bilayer of their cellular membranes. Its chemical structure is illustrated in Fig. 1, and the ester bonds that the various phospholipases can cleave are indicated. It is our intention in this introduction to review only briefly the history of the study of PI turnover and its relationship to cell stimulation, as detailed accounts can be found in reviews by L. E. Hokin (1968), Hawthorne and White (1975), and Michell (1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977 Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle pre-labelled with [32P]phosphate, Biochem. J. 162:61–73.

    PubMed  CAS  Google Scholar 

  • Abdel-Latif, A. A., Luke, B., and Smith, J. P., 1980, Studies on the properties of a soluble phosphatidylinositol-phosphodiesterase of rabbit iris smooth-muscle, Biochim. Biophys. Acta. 614:425–434.

    PubMed  CAS  Google Scholar 

  • Agranoff, B. W., 1978, Cyclitol confusion, Trends Biochem. Sci. 3:N283–235.

    CAS  Google Scholar 

  • Albano, J., Bhoola, K. D., and Kingsley, G., 1977, The control of cyclic GMP by calcium ionophores A23187, potassium and acetylcholine in enzyme-secreting pancreatic slices, J. Physiol. (Lond.) 267:35P–36P.

    CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1974a, Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes—activity at pH 5.5 and pH 7.0, Biochem. J. 142:591–597.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1974b, Phosphatidylinositol cleavage in lymphocytes— requirement for calcium ions at a low concentration and effects of other cations, Biochem. J. 142:599–604.

    PubMed  CAS  Google Scholar 

  • Allan, D., and Michell, R. H., 1975, Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes, Nature 258:348–349.

    PubMed  CAS  Google Scholar 

  • Allan, D., Billah, M. M., Finean, J. B., and Michell, R. H., 1976, Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellula [Ca+], Nature 261:58–60.

    PubMed  CAS  Google Scholar 

  • Allison, J. H., 1978, Lithium and brain myo-inositol metabolism, in: Cyclitols and Phosphoinositides (W. W. Wells, and F. Eisenberg, eds.), pp. 507–519, Academic Press, New York and London.

    Google Scholar 

  • Allison, J. H., and Cicero, T. J., 1980, Alchohol acutely depresses myo-inositol 1-phosphate levels in the male rat cerebral cortex, J. Pharmacol. Exp. Ther. 213:24–27.

    PubMed  CAS  Google Scholar 

  • Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P., and Sherman, W. R., 1976, Increased brain myo-inositol 1-phosphate in lithuim-treated rats, Biochem. Biophys. Res. Commun. 71:664–670.

    PubMed  CAS  Google Scholar 

  • Aloj, S. M., Lee, G., Grellman, E. F., Beguinot, F., Consiglio, E., and Koh, L. D., 1979, Role of phospholipids in the structure and function of the thyrotropin receptor, J. Biol. Chem. 254:9040–9048.

    PubMed  CAS  Google Scholar 

  • Althous-Salzman, M., Carafoli, E., and Jakob, A., 1980, Ca2+, K+ redistributions and α-adrenergic activation of glycogenolysis in perfused rat livers, Eur. J. Biochem. 106:241–248.

    Google Scholar 

  • Angus, W. W., and Lester, F. L., 1972, Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinoistol derived from phosphatidylinositol, Arch. Biochem. Biophys. 151:483–495.

    PubMed  CAS  Google Scholar 

  • Apitz-Castro, R. J., Mas, M. A., Cruz, M. R., and Jain, M. K., 1979, Isolation of homogeneous phospholipase A2 from human platelets, Biochem. Biophys. Res. Commun. 91:63–71.

    PubMed  CAS  Google Scholar 

  • Babcock, D. F., Chen, J. J., Yin, B. P., and Lardy, H. A., 1979, Evidence for mitochondrial localization of the hormone responsive pool of Ca2+ in isolated hepatocytes, J. Biol Chem. 254:8117–8120.

    PubMed  CAS  Google Scholar 

  • Baker, R. R., and Thompson, W., 1972, Positional distribution and turnover of fatty acids in phosphatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo, Biochim. Biophys. Acta 270:489–503.

    PubMed  CAS  Google Scholar 

  • Baker, R. R., and Thompson, W., 1973, Selective acylation of 1-acylglycerophosphorylinositol by rat brain microsomes. (Comparison with 1-acylglycerophosphorylcholine.) J. Biol Chem. 248:7060–7065.

    PubMed  CAS  Google Scholar 

  • Bell, F. P., 1978, Lipid exchange and transfer between biological lipid—protein structures, Prog. Lipid Res. 17:207–243.

    PubMed  CAS  Google Scholar 

  • Bell, R. L., and Majerus, P. W., 1980, Thrombin-induced hydrolysis of phosphatidylinositol in human platelets, J. Biol. Chem. 255:1790–1792.

    PubMed  CAS  Google Scholar 

  • Bell, R. L., Kennedy, D. A., Stanford, N., and Majerus, P. W., 1979, Diglyceride lipase: A pathway for arachidonate release from human platelets, Proc. Natl. Acad. Sci. 76:3238–3241.

    PubMed  CAS  Google Scholar 

  • Bell, R. L., Baenziger, N. L., and Majerus, P. W., 1980, Bradykinin-stimulated release of arachidonate from phosphatidylinositol in mouse fibrosarcoma cells, Prostaglandins 20:269–274.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Fain, J. N., 1979, Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine, Biochem. J. 178:59–69.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., and Lipke, H., 1979, Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytryptamine and cyclic nucleotides, J. Exp. Biol. 78:137–148.

    CAS  Google Scholar 

  • Billah, M. M., and Michell, R. H., 1979, Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones: Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation, Biochem. J. 182:661–668.

    PubMed  CAS  Google Scholar 

  • Bills, T. K., Smith, J. B., and Silver, M. J., 1977, Selective release of arachidonic acid from the phospholipids of human platelets in response to thrombin, J. Clin. Invest. 60:1–6.

    PubMed  CAS  Google Scholar 

  • Blackmore, P. F., Dehaye, J.-P., and Exton, J. H., 1979, Studies on α-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in α-adrenergic activation of phosphorylase in perfused rat liver, J. Biol. Chem. 254:6945–6950.

    PubMed  CAS  Google Scholar 

  • Blackwell, G. J., Duncombe, W. G., Flower, R. J., Parsons, M. F., and Vane, J. R., 1977, The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs, Br. J. Pharmac. 59:353–366.

    CAS  Google Scholar 

  • Blackwell, G. J., Carnuccio, R., DiRosa, M. Flower, R. J., Parente, L., and Persico, P., 1980, Macrocortin: A polypeptide causing the anti-phospholipase effect of glucocorticoids, Nature 287:147–149.

    PubMed  CAS  Google Scholar 

  • Bleasdale, J. E., Hawthorne, J. N., Widlund, L., and Heilbronn, E., 1976, Phospholipid turnover in Torpedo marmorata electric organ during discharge in vivo, Biochem. J. 158:557–565.

    PubMed  CAS  Google Scholar 

  • Bleasdale, J. E., Wallis, P., Macdonald, P. C., and Johnston, J. M., 1979, Characterization of the forward and reverse reactions catalysed by CDP-diacylglycerolinositol transferase in rabbit lung tissue, Biochim. Biophys. Acta 575:135–147.

    PubMed  CAS  Google Scholar 

  • Boggs, J. M., Wood, D. D., Moscarello, M. A., and Papahadjopoulos, 1977a, Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles, Biochemistry 16:2325–2329.

    PubMed  CAS  Google Scholar 

  • Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977b, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16:5420–5426.

    PubMed  CAS  Google Scholar 

  • Broekman, M. J., Ward, J. W., and Marcus, A. J., 1980, Phospholipid metabolism in stimulated human platelets, J. Clin. Invest. 66:275–283.

    PubMed  CAS  Google Scholar 

  • Brophy, P. J., Burback, P., Nelemans, S. A., Westerman, J., Wirtz, K. W. A., and Van Deenen, L. L. M., 1978, The distribution of phosphatidylinositol in microsomal membranes from rat liver after biosynthesis de novo, Biochem. J. 174:413–420.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Claret, M., and Jenkinson, D. H., 1979, Effects of catecholamines and calcium movements in isolated hepatocytes, Nature 279:544–546.

    PubMed  CAS  Google Scholar 

  • Bygrave, F. L., 1978, Mitochondria and the control of intracellular calcium, Biol. Rev. 53:43–79.

    PubMed  CAS  Google Scholar 

  • Chang, H. W., and Boch, E., 1979, Structural stabilisation of isolated acetylcholine receptor: Specific interaction with phospholipids, Biochemistry 18:172–179.

    PubMed  CAS  Google Scholar 

  • Christophe, J. P., Fransden, E. K., Conlon, T. P., Krishna, G., and Gardner, J. D., 1976, Action of cholecystokinin, cholinergic agents, and A-23187 on accumulation of guanosine 3′ : S′-monophosphate in dispersed guinea pig pancreatic acinar cells, J. Biol. Chem. 251:4640–4645.

    PubMed  CAS  Google Scholar 

  • Clements, R. S., and Rhoten, W. B., 1976, Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets, J. Clin. Invest. 57:684–691.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1979a, Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells, J. Physiol. 296:229–243.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1979b, Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling—studies with rat peritoneal mast cells, Biochem. J. 178:681–687.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1980, The ATP4− receptor of mast cells, Biochem. J. 188:789–798.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., Bennett, J. P., and Gomperts, B. D., 1980a, f-Met-Leu-Phe-induced phosphatidylinositol turnover in rabbit neutrophils is dependent on extracellular calcium, FEBS Lett. 110:115–118.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., Bennett, J. P., and Gromperts, B. D., 1980B, Stimulus-secretion coupling in rabbit neutrophils is not mediated by phosphatidylinositol breakdown, Nature 288:275–277.

    PubMed  CAS  Google Scholar 

  • Curtain, C. C., Looney, F. D., and Smelstorius, J. A., 1980, Lipid domain formation and ligand induced lymphocyte membrane changes, Biochim. Biophys. Acta 596:43–56.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., 1954, The measurement of 32P labelling of individual kephalins and lecithins in a small sample of tissue, Biochim. Biophys. Acta 14:379–384.

    Google Scholar 

  • Dawson, R. M. C., 1959, Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., 1973, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 97–116, Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Dawson, R. M. C., and Freinkel, N., 1961, The distribution of free meso-inositol in mammalian tissues including some observations on the lactating rat, Biochem. J. 78:606–610.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., and Hemington, N., 1977, A phosphodiesterase in rat kidney cortex that hydrolyses glycerophosphorylinositol, Biochem. J. 162:241–245.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., and Irvine, R. F., 1978, Possible role of lysosomal phospholipases in inducing tissue prostaglandin synthesis, Adv. Prostaglandin Thrombox. Res. 3:47–54.

    CAS  Google Scholar 

  • Dawson, R. M. C., Freinkel, N., Jungawala, F. B., and Clarke, N., 1971, The enzymic formation of myo-inositol 1 : 2 cyclic phosphate from phosphatidylinositol, Biochem. J. 122:605–607.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Hemington, N., Richards, D. E., and Irvine, R. F., 1979, sn-Glycerol(3)phosphoinositol glycerophosphohydrolase, a new phosphodiesterase in rat tissues, Biochem. J. 182:39–45.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Hemington, N., and Irvine, R. F., 1980, The inhibition and activation of Ca2+-dependent phosphatidylinositol phosphodiesterase by phospholipids and blood plasma, Eur. J. Biochem. 112:33–38.

    PubMed  CAS  Google Scholar 

  • Denton, R. M., and McCormack, J. G., 1980, The role of calcium in the regulation of mitochondrial metabolism Biochem. Soc. Trans. 8:266–268.

    PubMed  CAS  Google Scholar 

  • Douglas, W. W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34:451–474.

    PubMed  CAS  Google Scholar 

  • Durell, J., Garland, J. T., and Friedel, R. O., 1969, Acetylcholine action: Biochemical aspects, Science 165:862–866.

    PubMed  CAS  Google Scholar 

  • Eisenberg, F., 1967, D-Myoinositol 1-phosphate as product of cyclization of glucose-6-phosphate and substrate for a specific phosphatase in rat testis, J. Biol. Chem. 242:1375–1382.

    PubMed  CAS  Google Scholar 

  • Elsbach, P., and Farrow, S., 1969, Cellular triglyceride as a source of fatty acid for lecithin synthesis during phagocytosis, Biochim. Biophys. Acta 176:438–441.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., and Berridge, M. J., 1979a, Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland, Biochem. J. 178:45–58.

    PubMed  CAS  Google Scholar 

  • Fain, J. N., and Berridge, M. J. 1979b, Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands, Biochem. J. 180:655–661.

    PubMed  CAS  Google Scholar 

  • Farese, R. V., Sabir, M. A., and Larson, R. F., 1980, On the mechanisms whereby ACTH and cyclic AMP increase adrenal phosphoinositides. Rapid stimulation of the synthesis of phosphatidic acid and derivatives of CDP-diacylglycerol, J. Biol. Chem. 255:7232–7237.

    PubMed  CAS  Google Scholar 

  • Feinstein, M. B., 1980, Release of intracellular membrane-bound calcium precedes the onset of stimulus-induced exocytosis in platelets, Biochem. Biophys. Res. Commun. 93:593–600.

    PubMed  CAS  Google Scholar 

  • Ferber, E., Munder, P. G., Fischer, H., and Gerisch, G., 1970, High phospholipase activities in amoebae of Dictyostelium discoideum, Eur. J. Biochem. 14:253–257.

    PubMed  CAS  Google Scholar 

  • Fex, G., and Lernmark, Å., 1972, Effect of D-glucose on the incorporation of 32P into phospholipids of mouse pancreatic islets, FEBS Lett. 25:287–291.

    PubMed  CAS  Google Scholar 

  • Fisher, D. B., and Mueller, G. C., 1971, Studies on the mechanism by which phytohemagglutinin rapidly stimulates phospholipid metabolism of human lymphocytes, Biochim. Biophys. Acta 248:434–448.

    CAS  Google Scholar 

  • Flower, R. J., and Blackwell, G. J., 1976, The importance of phospholipase-A2 in prostaglandin biosynthesis, Biochem. Pharmacol. 25:285–291.

    PubMed  CAS  Google Scholar 

  • Freinkel, N., 1957, Pathways of thyroidal phosphorus metabolism: The effect of pituitary thyrotropin upon the phospholipids of the sheep thyroid gland, Endocrinology 61:448–460.

    PubMed  CAS  Google Scholar 

  • Freinkel, N., 1964, The intermediary metabolism of thyroid tissue, in: The Thyroid Gland, Vol. I (R. Pitt-Rivers and W. R. Trotter, eds.), pp. 131–162, Butterworths, London.

    Google Scholar 

  • Freinkel, N., and Cohanim, N., 1972, Islet phospholipogenesis and glucose-stimulated insulin secretion, J. Clin. Invest. 51:33a.

    Google Scholar 

  • Freinkel, N., Dawson, R. M. C., Ingbar, S. M., and White, R. W., 1959, The free myoinositol of thyroid tissue, Proc. Soc. Exp. Biol. Med. 100:549–551.

    PubMed  CAS  Google Scholar 

  • Freinkel, N., El Younsi, C., and Dawson, R. M. C., 1975, Interrelations between the phospholipids of rat pancreatic islets during glucose stimulation and their response to medium inositol and tetracaine, Eur. J. Biochem. 59:245–252.

    PubMed  CAS  Google Scholar 

  • Friedel, R. O., Brown, J. D., and Durell, J., 1969, The enzymic hydrolysis of phosphatidylinositol by guinea-pig brain: Subcellular distribution and hydrolysis products, J.Neurochem. 16:371–378.

    PubMed  CAS  Google Scholar 

  • Gerrard, J. M., Kindom, S. E., Peterson, D. A., Peller, J., Krantz, K. E., and White, J. G., 1979, Lysophosphatidic acids (influence on platelet aggregation and intracellular calcium flux), Am. J. Pathol. 96:423–438.

    PubMed  CAS  Google Scholar 

  • Ginsborg, B. L., and House, G. R., 1980, Stimulus-response coupling in gland cells, Annu. Reu. Biophys. Bioeng. 9:55–80.

    CAS  Google Scholar 

  • Glass, D. B., Frey, W. F., Carr, D. W., and Goldberg, N. D., 1977, Stimulation of human platelet guanylate cyclase by fatty acids, J. Biol. Chem. 252:1279–1285.

    PubMed  CAS  Google Scholar 

  • Graff, G., Stephenson, J. H., Glass, D. B., Haddox, M. K., and Goldberg, N. D., 1978, Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides, J. Biol. Chem. 253;7662–7676.

    PubMed  CAS  Google Scholar 

  • Griffin, H. D., and Hawthorne, J. N., 1978, Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-diphosphate in guinea-pig synaptosomes, Biochem. J. 176:541–552.

    PubMed  CAS  Google Scholar 

  • Griffin, H. D., Hawthorne, J. N., Sykes, M., and Orlacchio, A., 1979, A calciumrequirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors, Biochem. Pharmacol. 28:1143–1147.

    PubMed  CAS  Google Scholar 

  • Hallcher, L. M., and Sherman, W. R., 1980, The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain, J. Biol. Chem. 255:10896–10901.

    PubMed  CAS  Google Scholar 

  • Hanson, B. A., and Lester, R. L., 1980, Effects of inositol starvation on phospholipid and glycan synthesis in Saccharomyces cerevisiae, J. Bacteriol. 142:79–89.

    PubMed  CAS  Google Scholar 

  • Hauser, G., and Eichberg, J., 1975, Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propanolol, J.Biol. Chem. 250:105–112.

    PubMed  CAS  Google Scholar 

  • Hauser, H., Chapman, D., and Dawson, R. M. C., 1969, Physical studies of phospholipids. XL Ga2+ binding to monolayers of phosphatidylserine and phosphatidylinositol, Biochim. Biophys. Acta 183:320–333.

    PubMed  CAS  Google Scholar 

  • Hawthorne, J. N., and White, D. A., 1975, Myo-inositol lipids, Vitam. Horm. 33:529–573.

    PubMed  CAS  Google Scholar 

  • Hawthorne, J. M., Adnan, N. M., and Lymberpoulos, G., 1980, Membrane phospholipids, exocytosis and cell division, Biochem. Soc. Trans. 8:30–32.

    PubMed  CAS  Google Scholar 

  • Hayashi, E., Maeda, T., and Tomita, T., 1974, The effect of myo-inositol deficiency on lipid metabolism in rats. 1. The alteration of lipid metabolism in myo-inositol deficient rats, Biochim. Biophys. Acta 360:134–145.

    PubMed  CAS  Google Scholar 

  • Hayashi, E., Hasegawa, R., and Tomita, T., 1976, Accumulation of neutral lipids in Saccharomyces carlsbergensis by myo-inositol deficiency and its mechanism, J. Biol. Chem. 251:5759–5769.

    PubMed  CAS  Google Scholar 

  • Haye, B., Champion, S., and Jacquemin, C., 1973, Control by TSH of a phospholipase A2 activity, a limiting factor in the biosynthesis of prostaglandins in the thyroid, FEBS Lett. 30:253–259.

    PubMed  CAS  Google Scholar 

  • Hidaka, H., and Asano, T., 1977, Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides, Proc. Natl. Acad. Sci. (U.S.A.) 74:3657–3661.

    CAS  Google Scholar 

  • Hirasawa, K., Irvine, R. F., and Dawson, R. M. C., 1981a, The hydrolysis of phosphatidylinositol monolayers at an air/water interface by the calcium-ion-dependent phosphatidylinositol phosphodiesterase of pig brain, Biochem. J. 193:607–614.

    PubMed  CAS  Google Scholar 

  • Hirasawa, K., Irvine, R. F., and Dawson, R. M. C., 1981b, The catabolism of phosphatidylinositol by an EDTA-insensitive phospholipase At and calcium-dependent phosphatidylinositol phosphodiesterase in rat brain, Eur. J. Biochem. 120:53–58.

    PubMed  CAS  Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082–1090.

    PubMed  CAS  Google Scholar 

  • Hodson, S., 1978, The ATP-dependent concentration of calcium by a Golgi apparatus— rich fraction isolated from rat liver, J. Cell. Sci. 30:117–128.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1966, Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices, Biochim. Biophys. Acta 115:219–221.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1968, Dynamic aspects of phospholipids during protein secretion, Int. Rev. Cytol. 23:187–208.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., 1968, Studies on chemical mechanisms of the action of neurotransmitters and hormones. II. Increased incorporation of 32P in phosphatides as a second, adaptive response to pancreozymin or acetylcholine in pigeon pancreas slices, Arch. Biochem. Biophys. 124:280–284.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of P32 into phospholipids of pancreas slices, J. Biol. Chem. 203:967–977.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., and Hokin, L. E., 1964, Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in: Metabolism and Physiological Significance of Lipids (R. M. C. Dawson, D. N. Rhodes, eds.), pp. 423–434, John Wiley & Sons, New York.

    Google Scholar 

  • Hokin, M. R., Hokin, L. E., Saffron, M., Schally, A. V., and Zimmerman, B. V., 1958, Phospholipids and the secretion of adrenocorticotropin and of corticosteroids, J. Biol. Chem. 233:811–813.

    PubMed  CAS  Google Scholar 

  • Hokin-Neaverson, M., 1977, Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function, Adv. Exp. Biol. Med. 83:429–446.

    CAS  Google Scholar 

  • Hokin-Neaverson, M., Sadeghian, K., Majumder, A. L., and Eisenberg, F., 1975, Inositol is the water-soluble product of acetylcholine-stimulated breakdown of phosphatidylinositol in mouse pancreas, Biochem. Biophys. Res. Commun. 67:1537–1544.

    PubMed  CAS  Google Scholar 

  • Hokin-Neaverson, M., Sadeghian, K., Harris, D. W., and Merrin, J. S., 1977, Synthesis of CDP-diglyceride from phosphatidylinositol and CMP, Biochem. Biophys. Res. Commun. 78:364–371.

    PubMed  CAS  Google Scholar 

  • Holub, B. J., 1976, Specific formation of arachidonoyl phosphatidylinositol from 1-acyl-sn-glycero-phosphorylinositol in rat liver, Lipids 11:1–5.

    PubMed  CAS  Google Scholar 

  • Holub, B. J., and Kuksis, A., 1971, Differential distribution of orthophosphate-32P and glycerol-14C among molecular species of phosphatidylinositol of rat liver in vivo, J. Lipid Res. 12:699–705.

    PubMed  CAS  Google Scholar 

  • Holub, B. J., and Kusis, A., 1972, Further evidence for the interconversion of monophosphoinositides in vivo, Lipids 7:78–80.

    PubMed  CAS  Google Scholar 

  • Hong, S. L., and Deykin, D., 1979, Specificity of phospholipases in methylcholanthrenetransformed mouse fibroblasts activated by bradykinin, thrombin, serum and ionophore A23187, J. Biol. Chem. 254:11463–11466.

    PubMed  CAS  Google Scholar 

  • Hosaka, K., Yamashita, S., and Numa, S., 1975, Partial purification, properties and subcellular distribution of rat liver phosphatidate phosphatase, J. Biochem. 77:501–509.

    PubMed  CAS  Google Scholar 

  • Hsueh, W., Isakson, P. C., and Needleman, P., 1977, Hormone selective lipase activation in the isolated rabbit heart, Prostaglandins 13:1073–1076.

    PubMed  CAS  Google Scholar 

  • Hsueh, W., Kuhn, C., and Needleman, P., 1979, Relationship of prostaglandin secretion by rabbit alveolar macrophages to phagocytosis and lysosomal enzyme release, Biochem. J. 184:345–354.

    PubMed  CAS  Google Scholar 

  • Igrashi, Y., and Kondo, Y., 1980, Acute effect of thyrotropin on phosphatidylinositol degradation and transient accumulation of diacylglycerol in isolated thyroid follicles, Biochem. Biophys. Res. Commun. 97:759–765.

    Google Scholar 

  • Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian tissues? Biochem. J. 204:1–14.

    Google Scholar 

  • Irvine, R. F., and Dawson, R. M. C., 1978, The distribution of calcium-dependent phosphatidylinositol-specific phosphodiesterase in rat brain, J. Neurochem. 31:1427–1434.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., and Dawson, R. M. C., 1979a, Neural phospholipases hydrolysing phosphatidylinositol and their possible role in stimulated turnover of this phospholipid, Biochem. Soc. Trans. 7:353–357.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., and Dawson, R. M. C., 1979b, Transfer of arachidonic acid between phospholipids in rat liver microsomes, Biochem. Biophys. Res. Commun. 91:1349–1405.

    Google Scholar 

  • Irvine, R. F., and Dawson, R. M. C., 1980a, The control of phosphatidylinositol turnover in cell membranes, Biochem. Soc. Trans. 8:27–30.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., and Dawson, R. M. C., 1980b, The mechanism and function of phosphatidylinositol turnover, Biochem. Soc. Trans. 8:376–377.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1977, Phosphatidylinositoldegrading enzymes in liver lysosomes, Biochem. J. 164:277–280.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1978, The hydrolysis of phosphatidylinositol by lysosomal enzymes of rat liver and brain, Biochem. J. 176:475–484.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1979a, Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase, Biochem. J. 178:497–500.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Hemington, N., and Dawson, R. M. C., 1979b, The calcium-dependent phosphatidylinositol-phosphodiesterase of rat brain, mechanisms of suppression and stimulation, Eur. J. Biochem. 99:525–530.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1980a, Phosphatidylinositol phosphodiesterase in higher plants, Biochem. J. 192:279–283.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Brophy, P. J., and North, M. J., 1980b, Phosphatidylinositol-degrading enzymes in the cellular slime mould Dictyostelium discoideum, J. Gen. Microbiol. 121:495–497.

    CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., and Dawson, R. M. C., 1980c, Thyrotropin-stimulated phosphatidylinositol-specific phospholipase A2 in pig thyroid, a re-examination, FEBS Lett. 119:287–289.

    PubMed  CAS  Google Scholar 

  • Ito, T., Ohnishi, S., Ishinaga, M., and Kito, M., 1975, Synthesis of a new phosphatidylserine spin-label and Ca-induced lateral phase separation in phosphatidylserine -phosphatidylcholine membranes, Biochemistry 14:3064–3069.

    CAS  Google Scholar 

  • Jelsema, C. L., and Morré, D. J., 1978, Distribution of phospholipid biosynthetic enzymes among cell components of rat liver, J. Biol. Chem. 253:7960–7971.

    PubMed  CAS  Google Scholar 

  • Jesse, R. L., and Franson, R. C., 1979, Modulation of purified phospholipase A2 activity from human platelets by calcium and indomethacin, Biochim. Biophys. Acta 575:467–470.

    PubMed  CAS  Google Scholar 

  • Jones, L. M., and Michell, R. H., 1975, The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover, Biochem. J. 148:479–485.

    PubMed  CAS  Google Scholar 

  • Jones, L. M., Cockcroft, S., and Michell, R. H., 1979, Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists by histamine and by caerulein, Biochem. J. 182:669–676.

    PubMed  CAS  Google Scholar 

  • Kannagi, R., and Koizumi, K., 1979, Effect of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity, Biochim. Biophys. Acta 556:423–433.

    PubMed  CAS  Google Scholar 

  • Keenan, R. W., and Hokin, L. E., 1962, The identification of lysophosphatidylinositol and its enzymic conversion to phosphatidylinositol, Biochim. Biophys. Acta 60:428–430.

    PubMed  CAS  Google Scholar 

  • Kelly, R. E., and Rice, R. V., 1969, Ultrastructural studies on the contractile mechanism of smooth muscle, J. Cell Biol. 42:683–694.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Hübscher, G., and Hawthorne, J. N., 1961, Phosphoinositides 3. Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200.

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., 1962, The metabolism and function of complex lipids, Harvey Lect. 57:143–171.

    Google Scholar 

  • Keough, K. M. W., and Thompson, W., 1972, Soluble and particulate forms of phosphoinositide phosphodiesterase in ox brain, Biochim. Biophys. Acta 270:324–336.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Verrinder, T. R., and Hems, D. A., 1978, The influence of extracellular calcium concentration on the vasopressin-stimulated incorporation of inorganic phosphate into phosphatidylinositol in hepatocyte suspensions, Biochem. Soc. Trans. 6:1031–1033.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Rodrigues, L. M., and Hems, D. A., 1979, The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes, Biochem. J. 178:493–496.

    PubMed  CAS  Google Scholar 

  • Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273–2216.

    PubMed  CAS  Google Scholar 

  • Koch, M. A., and Diringer, H., 1974, Isolation of cyclic inositol-l,2-phosphate from mammalian cells and a probable function of phosphatidylinositol turnover, Biochem. Biophys. Res. Commun. 58:361–367.

    PubMed  CAS  Google Scholar 

  • Kuksis, A., and Mookerjea, S., 1978, Inositol, Nutr. Rev. 36:233–238.

    PubMed  CAS  Google Scholar 

  • Lake, W., Rutherford, J. and Freinkel, N., 1978, A role for ionic calcium in pancreatic islet stimulus-secretion coupling, Clin. Res. 26:420A.

    Google Scholar 

  • Lapetina, E. G., and Cuatracasas P., 1979, Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the secretion of serotonin, Biochim. Biophys. Acta 573:394–420.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., and Hawthorne, J. N., 1971, The diglyceride kinase of rat cerebral cortex, Biochem. J. 122:171–179.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., and Michell, R. H., 1973, A membrane-bound activity catalysing phosphatidylinositol breakdown to 1,2-diacylglycerol, D-myoinositol 1:2 cyclic phosphate, and D-myoinositol 1-phosphate, Biochem. J. 131:433–442.

    PubMed  CAS  Google Scholar 

  • Levey, G. S., 1971, Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidylinositol, J. Biol. Chem. 246:7405–7410.

    PubMed  CAS  Google Scholar 

  • Lloyd, J. V., and Mustard, J. F., 1973, Changes in 32P-content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin, Br. J. Haemotol. 26:243–253.

    Google Scholar 

  • Lloyd, J. V., Nishizawa, E. E., and Mustard, J. F., 1973, Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di- and triphosphoinositides, Br. J. Haemotol. 23:77–79.

    Google Scholar 

  • Lloyd, T., 1979, The effects of phosphatidylinositol on tyrosine hydroxylase, J. Biol. Chem. 254:7247–7254.

    PubMed  CAS  Google Scholar 

  • Low, M. G., and Finean, J. B., 1976, The action of phosphatidylinositol-specific phospholipase C on membranes, Biochem. J. 154:203–208.

    PubMed  CAS  Google Scholar 

  • Low, M. G., and Finean, J. B., 1978, Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C., Biochim, Biophys. Acta 508:565–570.

    CAS  Google Scholar 

  • Lucas, M., Schmid, G., Kromas R., and Löffler, G., 1978, Calcium metabolism and enzyme secretion in guinea pig pancreas (uptake storage and release of calcium in whole cells and mitochondrial and microsomal fractions), Eur. J. Biochem. 85:609–619.

    PubMed  CAS  Google Scholar 

  • Lunt, G. G., and Pickard, M. R., 1975, The sub-cellular localization of carbamylcholinestimulated phosphatidylinositol turnover in rat cerebral cortex in vivo, J. Neurochem. 24:1203–1208.

    PubMed  CAS  Google Scholar 

  • Mandersloot, J. G., Roelofsen, B., and de Gier, J., 1978, Phosphatidylinositol as the endogenous activator of the (Na + and K+) ATP-ase in microsomes of rabbit kidney, Biochim. Biophys. Acta 508:478–485.

    PubMed  CAS  Google Scholar 

  • Marcus, A. J., 1978, The role of lipids in platelet function: With particular reference to the arachidonic acid pathway, J. Lipid Res. 19:793–826.

    PubMed  CAS  Google Scholar 

  • Marcus, A. J., Ullman, H. L., and Safier, L. B., 1969, Lipid composition of subcellular particles of human blood platelets, J. Lipid Res. 10:108–114.

    PubMed  CAS  Google Scholar 

  • Marshall, P. J., Dixon, J. F., and Hokin, L. E., 1980, Evidence for a role in stimulus-secretion coupling of prostaglandins derived from release of arachidonoyl residues as a result of phosphatidylinositol breakdown, Proc. Natl. Acad. Sci. 77:3292–3296.

    PubMed  CAS  Google Scholar 

  • Matsuzawa, Y., and Hostetler, K. Y., 1980, Properties of phospholipase C isolated from rat liver lysosomes, J. Biol. Chem. 254:646–652.

    Google Scholar 

  • Mauco, G., Chap, H., Simon, M.-F., and Douste-Blazy, L., 1978, Phosphatidic and lysophosphatidic acid production in phospholipase C- and thrombin treated platelets. Possible involvement of a platelet lipase, Biochimie 60:653–661.

    PubMed  CAS  Google Scholar 

  • McDonald, J. M., Bruns, N. E., and Jarrett, L., 1978, Ability of insulin to increase calcium uptake by adipocyte endoplasmic reticulum, J. Biol. Chem. 253:3504–3508.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1979, Inositol phospholipids in membrane function, Trends Biochem. Sci. 4:128–131.

    CAS  Google Scholar 

  • Michell, R. H., Jafferji, S. S., and Jones, L. M., 1976, Receptor occupying dose-response curve suggests that phosphatidylinositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor, FEBS Lett. 69:1–5.

    PubMed  CAS  Google Scholar 

  • Murray, M. R., de Lam, H. H., and Chargaff, E., 1951, Specific inhibition by mesoinositol of the colchicine effect on rat fibroblasts, Exp. Cell Res. 2:165–177.

    CAS  Google Scholar 

  • Nathan, I., Fleischer, G., Livne, A., Dvilansky, A., and Parola, A. H., 1979, Membrane microenvironmental changes during activation of human blood platelets by thrombin, J. Biol. Chem. 254:9822–9828.

    PubMed  CAS  Google Scholar 

  • Petersen, O. H., and Laugier, R., 1980, Receptor-mediated control via the calcium effector of membrane ion permeability in pancreatic acinar cells, Biochem. Soc. Trans. 8:268–270.

    PubMed  CAS  Google Scholar 

  • Pickard, M. R., and Hawthorne, J. N., 1978, The labelling of nerve ending phospholipids in guinea-pig brain in vivo and the effect of electrical stimulation on phosphatidylinositol metabolism in prelabelled synaptosomes, J. Neurochem. 30:145–155.

    PubMed  CAS  Google Scholar 

  • Pickett, W. C., Jesse, R. L., and Cohen, P., 1977, Initiation of phospholipase A2 activity in human platelets by the calcium ion ionophore A23187, Biochim. Biophys. Acta 486:209–213.

    CAS  Google Scholar 

  • Prpić, V., Spencer, T. L., and Bygrave, F. L., 1978, Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal, Biochem. J. 176:705–714.

    PubMed  Google Scholar 

  • Putney, J. W., Weiss, S. J., Van De Walle, C. M., and Haddas, R. A., 1980, Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284:345–347.

    PubMed  CAS  Google Scholar 

  • Resch, K., 1976, Membrane-associated events in lymphocyte activation, in: Receptors and Recognition, Series A1 (P. Cuatracasas and M. F. Greaves, eds.), pp. 61–117, Chapman and Hall, London.

    Google Scholar 

  • Richards, D. E., Irvine, R. F., and Dawson, R. M. C., 1979, Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes, Biochem. J. 182:599–606.

    PubMed  CAS  Google Scholar 

  • Ristow, H. J., Messmer, T. D., Walter, S., and Paul, D., 1980, Stimulation of DNA synthesis and myo-inositol incorporation in mammalian cells, J. Cell. Physiol. 103:263–269.

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580–587.

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons, S., 1980, Indomethacin-induced accumulation of diglyceride in activated human platelets, J. Biol. Chem. 255:2259–2262.

    PubMed  CAS  Google Scholar 

  • Rittenhouse-Simmons, S., Russell, F. A., and Deykin, D., 1976, Transfer of arachidonic acid to human platelet plasmalogen in response to thrombin, Biochem. Biophys. Res. Commun. 70:295–301.

    PubMed  CAS  Google Scholar 

  • Roman, I., Gmaj, P., Nowicka, C., and Angielski, S., 1979, Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions, Eur. J. Biochem. 102:615–523.

    PubMed  CAS  Google Scholar 

  • Salmon, D. M., and Honeyman, T. W., 1980, Proposed mechanism of cholinergic action in smooth muscle, Nature 284:344–345.

    PubMed  CAS  Google Scholar 

  • Schacht, J., and Agranoff, B. W., 1974, Stimulation of phosphatidic acid by cholinergic agents in guinea-pig synaptosomes, J. Biol. Chem. 249:1551–1557.

    PubMed  CAS  Google Scholar 

  • Schellenberg, R. R., and Gillespie, E., 1977, Colchicine inhibits phosphatidylinositol turnover induced in lymphocytes by concanavalin A, Nature 261:741–742.

    Google Scholar 

  • chrey, M. P., and Rubin, R. P., 1979, Characterization of a calcium-mediated activation of arachidonic acid turnover in adrenal phospholipids by corticotropin, J. Biol. Chem. 254:11234–11241.

    Google Scholar 

  • Scott, T. W., and Dawson, R. M. C., 1968, Metabolism of phospholipids by spermatozoa and seminal plasma, Biochem. J. 108:457–463.

    PubMed  CAS  Google Scholar 

  • Scott, T. W., Mills, S. C., and Freinkel, N., 1968, The mechanism of thyrotropin action in relation to lipid metabolism in thyroid tissue, Biochem. J. 109:325–332.

    PubMed  CAS  Google Scholar 

  • Scott, T. W., Freinkel, N., Klein, J. H., and Nitzan, M., 1970, Metabolism of phospholipids and carbohydrates in dispersed porcine thyroid cells, Endocrinology 87:854–863.

    PubMed  CAS  Google Scholar 

  • Seamark, R. F., Tate, M. E., and Smeaton, T. C., 1968, The occurrence of scylloinositol and D-glycerol l-(L-myoinositol 1-hydrogen phosphate) in the male reproductive tract, J. Biol. Chem. 243:2424–2428.

    PubMed  CAS  Google Scholar 

  • Shaw, J. O., Klusick, S. J., and Hanahan, D. J., 1981, Activation of rabbit platelet phospholipase and thromboxane synthesis by l-O-hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine (platelet activating factor), Biochim. Biophys. Acta 663:222–229.

    PubMed  CAS  Google Scholar 

  • Sherman, W. R., Stewart, M. A., Kurien, M. M., and Goodwin, S. L., 1968, The measurement of myo-inositol, myo-inose-2 and scyllo-inositol in mammalian tissues, Biochim. Biophys. Acta 158:197–205.

    PubMed  CAS  Google Scholar 

  • Shum, T. Y. P., Gray, N. C. C., and Strickland, K. P., 1979, The deacylation of phosphatidylinositol by rat brain preparations, Can. J. Biochem. 57:1359–1367.

    PubMed  CAS  Google Scholar 

  • Slaby, F., and Bryan, J., 1976, High uptaue of myo-inositol by rat pancreatic tissue in vitro stimulates secretion, J. Biol. Chem. 251:5078–5086.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., Su, K. L., Der, O. M., and Tang, W., 1979, Enzymic regulation of arachidonate metabolism in brain membrane phosphoglycerides, Lipids 14:229–235.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979a,Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692–3695.

    PubMed  CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y., 1979b, Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91(4):1218–1224.

    PubMed  CAS  Google Scholar 

  • Takenawa, T., Satto, M., Nagai, Y., and Egawa, K., 1977, Solubilization of the enzyme catalyzing CDP-diglyceride-independent incorporation of myo-inositol into phosphatidyl inositol and its comparison to CDP-diglyceride : inositol transferase, Arch. Biochem. Biophys. 182:244–250.

    PubMed  CAS  Google Scholar 

  • Tamarit-Rodriguez, J., Hellmann, B., and Sehlin, J., 1978, Metabolic characteristics of pancreatic β-cells exposed to calcium-transporting ionophores, Biochim. Biophys. Acta 496:167–174.

    Google Scholar 

  • Taylor, W. M., Prpić, V., Exton, J. H., and Bygrave, F. L., 1980, Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with α-adrenergic agonists and with glucagon, Biochem. J. 188:443–450.

    PubMed  CAS  Google Scholar 

  • Thompson, W., and McDonald, G., 1979, Isolation of a specific arachidonoyl coenzyme A:cytidine diphosphate monoacylglycerol acyltransferase, J. Biol. Chem. 254:3311–3314.

    PubMed  CAS  Google Scholar 

  • Tolbert, M. E. M., White, A. C, Aspry, K., Cutts, J., and Fain, J. N., 1980, Stimulation by vasopressin and α-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells, J. Biol. Chem. 255:1938–1944.

    PubMed  CAS  Google Scholar 

  • Trus, M. D., Hintz, C. S., Weinstein, J. B., Williams, A. D., Pagliara, A. S., and Matschinsky, F. M., 1979, Comparison of the effects of glucose and acetylcholine on insulin release and intermediary metabolism in rat pancreatic islets, J. Biol. Chem. 254:3921–3929.

    PubMed  CAS  Google Scholar 

  • Van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., Van Deenen, L. L. M., and de Gier, J., 1978, Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine, Biochim. Biophys. Acta 512:84–96.

    PubMed  Google Scholar 

  • Vignais, P. M., Vignais, P. V., and Lehninger, A. L., 1964, Identification of phosphatidylinositol as a factor required in mitochondrial contraction, J. Biol. Chem. 239:2011–2021.

    PubMed  CAS  Google Scholar 

  • Wassef, M. K., and Horowitz, M. I., 1981, Degradation of phosphatidylinositol by soluble enzymes of rat gastric mucosa, Biochim. Biophys. Acta. 665:234–243.

    PubMed  CAS  Google Scholar 

  • White, D. A., Pounder, D. J., and Hawthorne, J. N., 1971, Phospholipase A1, activity of guinea pig pancreas, Biochim. Biophys. Acta 242:99–107.

    PubMed  CAS  Google Scholar 

  • White, M. A., 1973, The phospholipid composition of mammalian tissues, in: Form and Function of Phospholipids (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 441–482, Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Wootton, J. A., and Kinsella, J. E., 1977, Properties of cytidinediphosphodiacyl-sn-glycerol:myoinositol transferase of bovine mammary tissue, Int. J. Biochem. 8:449–456.

    CAS  Google Scholar 

  • Yamashita, S., and Oshima, A., 1980, Regulation of phosphatidylethanolamine methyltransferase level by myo-inositol in Saccharomyces cerevisiae, Eur. J. Biochem. 104:611–616.

    PubMed  CAS  Google Scholar 

  • Yandrasitz, J. R., and Segal, S., 1979, The effect of MnCl2 on the basal and acetylcholine-stimulated turnover of phosphatidylinositol in synaptosomes, FEBS Lett. 108:279–282.

    PubMed  CAS  Google Scholar 

  • Yousef, I. M., Fisher, M. M, Peikarski, J., and Holub, B. J., 1977, Activity of phospholipid-synthesizing enzymes in rat liver plasma membranes and the source of biliary lecithin, Lipids 12:140–144.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Publishing Corporation

About this chapter

Cite this chapter

Irvine, R.F., Dawson, R.M.C., Freinkel, N. (1982). Stimulated Phosphatidylinositol Turnover A Brief Appraisal. In: Freinkel, N. (eds) Contemporary Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4187-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4187-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4189-5

  • Online ISBN: 978-1-4684-4187-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics