Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 59))

Abstract

Contractile and motile phenomena in plasmodia of Physarum are considered with respect to possibilities of applying laser techniques for registration and for an analysis of their molecular basis. In addition to protoplasmic strands, the advantages of two special models are discussed, protoplasmic drops and endoplasmic veins. The presentation is focussed on the following phenomena: endoplasmic shuttle streaming, contractile activities of the force-generating cytoplasmic actomyosin, dynamics of actin transformations (sol ⇌ gel transitions) and actin-myosin interactions, synchronisation and wave phenomena of contractile activities, and membrane flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Earnshaw and M. W. Steer, Studies of cellular dynamics by laser Doppler microscopy, Pestic. Sci. 10: 358 (1979).

    Article  Google Scholar 

  2. K. E. Wohlfarth-Bottermann, Ursachen von Zellbewegungen, Cytoplasmatische Actomyosine und ihre Bedeutung für Protoplasmaströmungen und Zellmotilität, Leopoldina 21; 85 (1975).

    Google Scholar 

  3. H. Komnick, W. Stockem and K. E. Wohlfarth-Bottermann, Cell Motility: Mechanisms in protoplasmic streaming and ameboid movement, Int. Rev. Cytol. 34: 169 (1973).

    Article  Google Scholar 

  4. K. E. Wohlfarth-Bottermann, Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. X. Die Anordnung der Actomyosinfibrillen in experimentell unbeeinflußten Protoplasmaadern von Physarum in situ, Protistologica XI: 19 (1975).

    Google Scholar 

  5. N. Kamiya, Protoplasmic streaming, in: “Protoplasmatologia VIII. 3a”, L. V. Heilbrunn and F. Weber, eds., Springer, Wien (1959).

    Google Scholar 

  6. K. E. Wohlfarth-Bottermann, Plasmalemma invaginations as characteristic constituents of plasmodia of Physarum polycephalum, J. Cell Sci. 16: 23 (1974).

    Google Scholar 

  7. K. E. Wohlfarth-Bottermann, Oscillatory contraction activity in Physarum, J. Exp. Biol. 81: 15 (1979).

    Google Scholar 

  8. F. Achenbach, W. Naib-Majani and K. E. Wohlfarth-Bottermann, Plasmalemma invaginations of Physarum dependent on the nutritional content of the plasmodial environment, J. Cell Sci. 36: 355 (1979).

    Google Scholar 

  9. N. Hülsmann and K. E. Wohlfarth-Bottermann, Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum, Cytobiologie 17: 317 (1978).

    Google Scholar 

  10. N. Hülsmann and K. E. Wohlfarth-Bottermann, Räumliche und zeitliche Analyse von kontraktionsabhängigen Oberflächenbewegungen bei Physarum polycephalum, Cytobiologie 17: 23 (1978).

    Google Scholar 

  11. A. Grebecki and M. Cieslaswka, Dynamics of the ectoplasmic walls during pulsation of plasmodial veins of Physarum polycephalum, Protoplasma 97: 365 (1978).

    Article  Google Scholar 

  12. K. E. Wohlfarth-Bottermann and F. Achenbach, Lateral apertures as passage-ways between ectoplasm and endoplasm in plasmodial strands of Physarum, Cell Biol. Int. Rpts. 6: 57 (1982).

    Article  Google Scholar 

  13. U. Achenbach and K. E. Wohlfarth-Bottermann, Synchronization and signal transmission in protoplasmic strands of Physarum. The endoplasmic streaming as a pacemaker and the importance of phase deviations for the control of streaming reversal, Planta 151: 584 (1981).

    Article  Google Scholar 

  14. K. Götzv. Olenhusen and K. E. Wohlfarth-Bottermann, Evidence for actin transformations during the contraction-relaxation cycle of cytoplasmic actomyosin: Cycle blockade by phalloidin-injection, in: “Cell Motility, Molecules and Organization”, S. Hatano, H. Ishikawa and H. Sato, eds., University of Tokyo Press, Tokyo (1979).

    Google Scholar 

  15. G. Isenberg and K. E. Wohlfarth-Bottermann, Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin, Cell Tiss. Res. 173: 495 (1976).

    Google Scholar 

  16. K. E. Wohlfarth-Bottermann and G. Isenberg, Dynamics and molecular basis of the contractile system of Physarum. in: “Contractile Systems in Non-Muscle Tissues”, S. V. Perry, A. Margreth and R.S. Adelstein, eds., North/Holland Publ. Comp., Amsterdam (1976).

    Google Scholar 

  17. W. Gawlitta, H. U. Hoffmann and W. Stockem, Morphology and dynamic activity of the cell surface in different types of microplasmodia of the acellular slime mold Physarum polycephalum, Publ. Univ. of Innsbruck 120: 176 (1979).

    Google Scholar 

  18. K. Götz v. Olenhusen, H. Jücker and K. E. Wohlfarth-Bottermann, Induction of a plasmodial stage of Physarum without plasma-lemma invaginations, Cell Tiss. Res. 197: 463 (1979).

    Google Scholar 

  19. F. Achenbach, U. Achenbach and K. E. Wohlfarth-Bottermann, Plasmalemma invaginations, contraction and locomotion in normal and caffeine-treated protoplasmic drops of Physarum, Eur. J. Cell Biol. 20: 12 (1979).

    Google Scholar 

  20. T. Ueda, K. Götz v. Olenhusen and K. E. Wohlfarth-Bottermann, Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5’ AMP, Cytobiologie 18: 76 (1978).

    Google Scholar 

  21. K. E. Wohlfarth-Bottermann, Tensiometric demonstration of endogenous oscillating contractions in plasmodia of Physarum polycephalum, Z. Pflanzenphysiol. 76: 14 (1975).

    Google Scholar 

  22. N. Kamiya, Physical and chemical basis of cytoplasmic streaming, Ann. Rev. Plant Physiol. 32: 205 (1981).

    Article  Google Scholar 

  23. K. E. Wohlfarth-Bottermann, Oscillating contractions in protoplasmic strands of Physarum: Simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence, J. Exp. Biol. 67: 49 (1977).

    Google Scholar 

  24. K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung. II. Lichtmikroskopische Darstellung, Protoplasma 57: 747 (1963).

    Article  Google Scholar 

  25. K. E. Wohlfarth-Bottermann, Weitreichende, fibrilläre Protoplasmadifferenzierungen and ihre Bedeutung für die Protoplasmaströmung. III. Entstehung and experimentell induzier-bare Musterbildungen, Roux’Archiv Entwicklungsmech. 156: 371 (1965).

    Article  Google Scholar 

  26. K. E. Wohlfarth-Bottermann and M. Fleischer, Cycling aggregation pattern of cytoplasmic F-actin coordinated with oscillating tension force generation, Cell Tiss. Res. 165: 327 (1976).

    Google Scholar 

  27. M. Fleischer and K. E. Wohlfarth-Bottermann, Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10: 339 (1975).

    Google Scholar 

  28. W. Naib-Majani, W. Stockem, K. E. Wohlfarth-Bottermann, M. Osborn and K. Weber, Immunocytochemistry of the acellular slime mold Physarum polycephalum. Spatial organization of cytoplasmic actin, Eur. J. Cell Biol. (in press).

    Google Scholar 

  29. Z. Baranowski and K. E. Wohlfarth-Bottermann, Endoplasmic veins from plasmodia of Physarum polycephalum: a new strand model with defined age, structure and behaviour, Eur. J. Cell Biol. 27: 1 (1982).

    Google Scholar 

  30. K. E. Wohlfarth-Bottermann und W. Stockem, Die Regeneration des Plasmalemmas von Physarum polycephalum, Roux’Archiv Entwicklungsmech. 164: 321 (1970).

    Article  Google Scholar 

  31. F. Achenbach and K. E. Wohlfarth-Bottermann, Morphogenesis and disassembly of the circular plasmalemma invagination system in Physarum polycephalum, Differentiation 19: 179 (1981).

    Article  Google Scholar 

  32. Z. Baranowski, The contraction-relaxation waves in Physarum polycephalum plasmodia, Acta Protozoologica 17: 377 (1978).

    Google Scholar 

  33. Z. Hejnowicz and K. E. Wohlfarth-Bottermann, Propagated waves induced by gradients of physiological factors within plasmodia of Physarum polycephalum, Planta 150: 144 (1980).

    Article  Google Scholar 

  34. A. Grebecki and M. Cieslawska, Plasmodium of Physarum polycephalum as a synchronous contractile system, Cytobiologie 17: 335 (1978).

    Google Scholar 

  35. Y. Yoshimoto and N. Kamiya, Studies on contraction rhythm of the plasmodial strand. III. Role on endoplasmic streaming in synchronization of local rhythms, Protoplasma 95: 111 (1978).

    Article  Google Scholar 

  36. Y. Takeuchi and M. Yoneda, Synchrony in the rhythm of the contraction-relaxation cycle in two plasmodial strands of Physarum polycephalum, J. Cell Sci. 26: 151 (1977).

    Google Scholar 

  37. K. E. Samans, K. Götz v. Olenhusen and K. E. WohlfarthBottermann, Oscillating contractions in protoplasmic strands of Physarum: Infrared reflexion as a non-invasive registration technique, Cell Biol. Int. Rpts. 2: 271 (1978).

    Article  Google Scholar 

  38. F. Achenbach, U. Achenbach, K. E. Samans and K. E. WohlfarthBottermann, An inexpensive “silicon photo device” for trans-microscopic registration of rhythmical movement phenomena, Microscopica Acta 84: 43 (1981).

    Google Scholar 

  39. D. Kessler, Plasmodial structure and motility,in: “Cell Biology of Physarum and Didymium”, H. C. Aldrich and J. W. Daniel, eds., Academic Press, New York (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Wohlfarth-Bottermann, K.E. (1983). Dynamic Cellular Phenomena in Physarum Possibly Accessible to Laser Techniques. In: Earnshaw, J.C., Steer, M.W. (eds) The Application of Laser Light Scattering to the Study of Biological Motion. NATO Advanced Science Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4487-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4487-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4489-6

  • Online ISBN: 978-1-4684-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics