Skip to main content

Thermal Control of Fatty Acid Synthetases in Bacteria

  • Chapter
Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

  • 290 Accesses

Abstract

A wide variety of organisms, ranging from bacteria to higher plants and animals, adjust the fatty acid composition of their membrane lipids in response to the environmental temperature. The mechanisms regulating the temperature-dependent alteration, which have been studied extensively by many investigators (Sinensky, 1971; Kito et al., 1975; Cronan and Gelmann, 1975; Okuyama et al., 1977; Slack and Roughan, 1978; Fukushima et al., 1976; Miller et al., 1976; Cossins and Prosser, 1978), seem to operate at the levels of both phosphatidic acid synthesis and fatty acid synthesis. Microorganisms are particularly useful for studying the mechanisms of this alteration for two reasons. First, they quickly respond to changes in their growth temperature, and second, it is relatively easy to isolate mutants, which may provide a great deal of information. The most commonly observed changes in fatty acid composition are those in the proportions of unsaturated fatty acids and in the degree of unsaturation. In some cases, acyl chain length may also change with that of the growth temperature (McElhaney, 1974; see Russell, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, K., Kawaguchi, A., Saito, Y., Koike, S., Seyama, Y., Yamakawa, T., and Okuda, S., 1982, Propionyl-CoA induced synthesis of even-chain-length fatty acids by fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 91:11.

    PubMed  CAS  Google Scholar 

  • Ariga, N., Maruyama, K., and Kawaguichi, A., 1984, Comparative studies on fatty acid synthases of corynebacteria, J. Gen. Appl. Microbiol., in press.

    Google Scholar 

  • Arnstadt, K. I., Schindlbeck, G., and Lynen, F., 1975, Zum Mechanismus der Kondensationsreaktion der Fettsäurebiosynthese, Eur. J. Biochem. 55:561.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, K., 1969, Enzymic synthesis of monounsaturated fatty acids, Acc. Chem. Res. 2:193.

    Article  CAS  Google Scholar 

  • Bloch, K., 1977, Control mechanisms for fatty acid synthesis in Mycobacierium smegmatis, Adv. Enxymol. 45:1.

    CAS  Google Scholar 

  • Bloch, K., Baronowsky, P., Goldfine, H., Lennarz, W. J., Light, R., Norris, A. T., and Scheuerbrandt, G., 1961, Biosynthesis and metabolism of unsaturated fatty acids, Fed. Proc. 20:921.

    PubMed  CAS  Google Scholar 

  • Bowie, I. S., Grigor, M. R., Dunckley, G. G., Loutit, M. W., and Loutit, J. S., 1972, The DNA base composition and fatty acid constitution of some gram-positive pleomorphic soil bacteria, Soil Biol. Biochem. 4:397.

    Article  CAS  Google Scholar 

  • Brock, D. J. H., Kass, L. R., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. II. Mode of action, J. Biol. Chem. 242:4432.

    PubMed  CAS  Google Scholar 

  • Buttke, T. M., and Ingram, L. O., 1978, Inhibition of unsaturated fatty acid synthesis in Escherichia coli by the antibiotic cerulenin, Biochemistry 17:5282.

    Article  PubMed  CAS  Google Scholar 

  • Carey, E. M., and Dils, R., 1970, Fatty acid biosynthesis. VI. Specificity of termination of fatty acid biosynthesis by fatty acid synthetase from lactating-rabbit mammary gland, Biochim. Biophys. Acta 210:388.

    PubMed  CAS  Google Scholar 

  • Collins, M. D., and Jones, D., 1980, Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid, J. Appl. Bacteriol. 48:459.

    Article  CAS  Google Scholar 

  • Collins, M. D., Pirouz, T., Goodfellow, M., and Minnikin, D. E., 1977, Distribution of menaquinones in actinomycetes and corynebacteria, J. Gen. Microbiol. 100:221.

    PubMed  CAS  Google Scholar 

  • Collins, M. D., Goodfellow, M., and Minnikin, D. E., 1979, Isoprenoid quinones in the classification of coryneform and related bacteria, J. Gen. Microbiol. 110:127.

    PubMed  CAS  Google Scholar 

  • Collins, M. D., Goodfellow, M., and Minnikin, D. E., 1980, Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa, J. Gen. Microbiol. 118:29.

    PubMed  CAS  Google Scholar 

  • Cossins, A. R., and Prosser, C. L., 1978, Evolutionary adaptation of membranes to temperature, Proc. Natl. Acad. Sci. USA 75:2040.

    Article  PubMed  CAS  Google Scholar 

  • Crombach, W. H. J., 1972, DNA base composition of soil arthrobacters and other coryneforms from cheese and sea fish, Antonie van Leeuwenhoek J. Microbiol. Serol. 38:105.

    Article  CAS  Google Scholar 

  • Crombach, W. H. J., 1974, Relationships among coryneform bacteria from soil, cheese, and sea fish, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:347.

    Article  CAS  Google Scholar 

  • Cronan, J. E., Jr., and Gelmann, E. P., 1975, Physical properties of membrane lipids: Biological relevance and regulation, Bacteriol. Rev. 39:232.

    PubMed  CAS  Google Scholar 

  • D’Agnolo, G., Rosenfeld, I. S., and Vagelos, P. R., 1975, Multiple forms of β-ketoacyl-acyl carrier protein synthetase in Escherichia coli, J. Biol. Chem. 250:5289.

    PubMed  Google Scholar 

  • Erwin, J., and Bloch, K., 1964, Biosynthesis of unsaturated fatty acids in microorganisms, Science 143:1006.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, F., and Kandier, O., 1973, Die Mureintypen in der Gattung Cellulomonas Bergey et al., Arch. Microbiol. 89:41.

    Article  CAS  Google Scholar 

  • Fiedler, F., Schäffler, M. J., and Stackebrandt, E., 1981, Biochemical and nucleic acid hybridization studies on Brevibacterium linens and related strains, Arch. Microbiol. 129:85.

    Article  CAS  Google Scholar 

  • Flick, P. K., and Bloch, K., 1974, In vitro alterations of the product distribution of the fatty acid synthetase from Mycobacterium phlei, J. Biol. Chem. 249:1031.

    PubMed  CAS  Google Scholar 

  • Fukushima, H., Martin, C., Iida, H., and Nozawa, Y., 1976, Changes in membrane lipid composition during temperature adaptation by a thermotolerant strain of Tetrahymena pyriformis, Biochim. Biophys. Acta 431:165.

    PubMed  CAS  Google Scholar 

  • Fulco, A. J., 1974, Metabolic alterations of fatty acids, Annu. Rev. Biochem. 43:215.

    Article  PubMed  CAS  Google Scholar 

  • Garwin, J. L., Klages, A. L., and Cronan, J. E. Jr., 1980, Structure, enzymic, and genetic studies of β-ketoacyl-acyl carrier protein synthetases I and II of Escherichia coli, J. Biol. Chem. 255:11949.

    PubMed  CAS  Google Scholar 

  • Helmkamp, G. M., Rando, R. R., Brock, D. J. H., and Bloch, K., 1968, β-Hydroxydecanoyl thioester dehydrase: Specificity of substrates and acetylenic inhibitors, J. Biol. Chem. 243:3229.

    PubMed  CAS  Google Scholar 

  • Ikemoto, S., Kato, K., and Komagata, K., 1978a, Cellular fatty acid composition in methanol-utilizing bacteria, J. Gen. Appl. Microbiol. 24:41.

    Article  CAS  Google Scholar 

  • Ikemoto, S., Kuraishi, H., Komagata, K., Azuma, R., Suto, T., and Murooka, H., 1978b, Cellular fatty acid composition in Pseudomonas species, J. Gen. Appl. Microbiol. 24:199.

    Article  CAS  Google Scholar 

  • Kaneda, T., 1977, Fatty acids of the genus Bacillus: An example of branched-chain preference, Bacteriol. Rev. 41:391.

    PubMed  CAS  Google Scholar 

  • Kass, L. R., Brock, D. J. H., and Bloch, K., 1967, β-Hydroxydecanoyl thioester dehydrase. I. Purification and properties, J. Biol. Chem. 242:4418.

    PubMed  CAS  Google Scholar 

  • Kates, M., 1964, Bacterial lipids, Adv. Lipid Res. 2:17.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, A., and Okuda, S., 1977, Fatty acid synthetase from Brevibacterium ammoniagenes: Formation of monounsaturated fatty acids by a multienzyme complex, Proc. Natl. Acad. Sci. USA 74:3180.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, A., Seyama, Y., Sasaki, K., Okuda, S., and Yamakawa, T., 1979, Thermal regulation of fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 85:865.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, A., Arai, K., Seyama, Y., Yamakawa, T., and Okuda, S., 1980, Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 88:303.

    PubMed  CAS  Google Scholar 

  • Keddle, R. M., and Cure, G. L., 1977, The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources, J. Appl. Bacteriol. 42:229.

    Article  Google Scholar 

  • Kito, M., Ishinaga, M., Nishihara, M., Kato, M., Sawada, S., and Hata, T., 1975, Metabolism of the phosphatidylglycerol molecular species in Escherichia coli, Eur. J. Biochem. 54:55.

    Article  PubMed  CAS  Google Scholar 

  • Knoche, H. W., and Koths, K. E., 1973, Characterization of a fatty acid synthetase from Corynebacterium diphtheriae, J. Biol. Chem. 248:3517.

    PubMed  CAS  Google Scholar 

  • Komura, I., Yamada, K., Otsuka, S., and Komagata, K., 1975, Taxonomic significance of phospholipids in coryneform and nocardioform bacteria, J. Gen. Appl. Microbiol. 21:251.

    Article  Google Scholar 

  • Kühn, L., Castorph, H., and Schweizer, E., 1972, Gene linkage and gene-enzyme relations in the fatty-acid-synthetase system of Saccharomyces cerevisiae, Eur. J. Biochem. 24:492.

    Article  PubMed  Google Scholar 

  • Lennarz, W. J., 1966, Lipid metabolism in the bacteria, Adv. Lipid Res. 4:175.

    PubMed  CAS  Google Scholar 

  • Lennarz, W. J., Light, R. J., and Bloch, K., 1962, A fatty acid synthetase from E. coli, Proc. Natl. Acad. Sci. USA 48:840.

    Article  PubMed  CAS  Google Scholar 

  • Lynen, F., 1980, On the structure of fatty acid synthetase of yeast, Eur. J. Biochem. 112:431.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. N., 1974, The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures, J. Mol. Biol. 84:145.

    Article  PubMed  CAS  Google Scholar 

  • Marr, A. G., and Ingraham, J. L., 1962, Effect of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84:1260.

    PubMed  CAS  Google Scholar 

  • Miller, N. G. A., Hill, M. W., and Smith, M. W., 1976, Positional and species analysis of membrane phospholipids extracted from goldfish adapted to different environmental temperatures, Biochim. Biophys. Acta 455:644.

    Article  PubMed  CAS  Google Scholar 

  • Minnikin, D. E., Goodfellow, M., and Collins, M. D., 1978, Lipid composition in the classification and identification of coryneform and related taxa, in: Coryneform Bacteria (J. Bousfield and A. G. Callely, eds.), pp. 85–160, Academic Press, New York.

    Google Scholar 

  • Okuyama, H., Yamada, K., Kameyama, Y., Ikezawa, H., Akamatsu, Y., and Nojima, S., 1977, Regulation of membrane lipid synthesis in Escherichia coli after shifts in temperature, Biochemistry 16:2668.

    Article  PubMed  CAS  Google Scholar 

  • Schleifer, R. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407.

    PubMed  CAS  Google Scholar 

  • Schroepfer, G. J., Jr., and Bloch, K., 1965, The stereospecific conversion of stearic acid to oleic acid, J. Biol. Chem. 240:54.

    PubMed  Google Scholar 

  • Schweizer, E., and Boiling, H., 1970, A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis, Proc. Natl. Acad. Sci. USA 67:660.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, E., Kniep, B., Castorph, H., and Holzner, U., 1973, Pantetheine-free mutants of the yeast fatty-acid-synthetase complex, Eur. J. Biochem. 39:353.

    Article  PubMed  CAS  Google Scholar 

  • Seyama, Y., Kasama, T., Yamakawa, T., Kawaguchi, A., and Okuda, S., 1977, Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes, J. Biochem. 81:1167.

    PubMed  CAS  Google Scholar 

  • Seyama, Y., Kawaguchi, A., Okuda, S., and Yamakawa, T., 1978, New assay method for fatty acid synthetase with mass fragmentography, J. Biochem. 84:1309.

    PubMed  CAS  Google Scholar 

  • Sinensky, M., 1971, Temperature control of phospholipid biosynthesis in Escherichia coli, J. Bacteriol. 106:449.

    PubMed  CAS  Google Scholar 

  • Skyring, G. W., and Quadling, C, 1970, Soil bacteria: A principal component analysis and guanine-cytosine contents of some arthrobacter-coryneform soil isolates and of some named cultures, Can. J. Microbiol. 16:95.

    Article  PubMed  CAS  Google Scholar 

  • Slack, C. R., and Roughan, P. G., 1978, Rapid temperature-induced changes in fatty acid composition of certain lipids in developing linseed and soya-bean cotyledons, Biochem. J. 170:437.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and Fiedler, F., 1979, DNA-DNA homology studies among strains of Arthrobacter and Brevibacterium, Arch. Microbiol. 120:289.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and Kandier, O., 1979, Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology, and proposal of seven neotype strains, Int. J. Syst. Bacteriol. 29:273.

    Article  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1981a, Animal fatty acid synthetase: A novel arrangement of the β-ketoacyl synthetase sites comprising domains of the two subunits, J. Biol. Chem. 256:5128.

    PubMed  CAS  Google Scholar 

  • Stoops, J. K., and Wakil, S. J., 1981b, The yeast fatty acid synthetase: Structure-function relationship and the role of the active cysteine-SH and pantetheine-SH, J. Biol. Chem. 256:8364.

    PubMed  CAS  Google Scholar 

  • Stoops, J. K., Arslanian, M. J., Chalmers, J. H., Jr., Joshi, V. C, and Wakil, S. J., 1977, Fatty acid synthetase complexes, Bioorg. Chem. 1:339.

    CAS  Google Scholar 

  • Sumper, M., Oesterhelt, D., Riepertinger, C, and Lynen, F., 1969, Die Synthese verschiedener Carbonsäuren durch den Multienzymekomplex der Fettsäuresynthese aus Hefe und Erklärung ihrer Bildung, Eur. J. Biochem. 10:377.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., and Komagata, K., 1983, Taxonomic significance of cellular fatty acid composition in coryneform bacteria, Int. J. Syst. Bacteriol. 33:188.

    Article  CAS  Google Scholar 

  • Suzuki, K., Saito, K., Kawaguchi, A., Okuda, S., and Komagata, K., 1981a, Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains, J. Gen. Appl. Microbiol. 27:261.

    Article  CAS  Google Scholar 

  • Suzuki, K., Kaneko, T., and Komagata, K., 1981b, Deoxyribonucleic acid homologies among coryneform bacteria, Int. J. Syst. Bacteriol. 31:131.

    Article  Google Scholar 

  • Suzuki, K., Kawaguchi, A., Saito, K., Okuda, S., and Komagata, K., 1982, Taxonomic significance of the position of double bonds of unsaturated fatty acids in corynebacteria, J. Gen. Appl. Microbiol. 28:409.

    Article  CAS  Google Scholar 

  • Uchida, K., and Aida, K., 1977, Acyl type of bacterial cell wall: Its simple identification by a colorimetric method, J. Gen. Appl. Microbiol. 23:249.

    Article  CAS  Google Scholar 

  • Uchida, K., and Aida, K., 1979, Taxonomic significance of cell-wall acyl type in Corynebacterium-Mycobacterium-Nocardia group by a glycolate test, J. Gen. Appl. Microbiol. 25:169.

    Article  CAS  Google Scholar 

  • Van den Bosch, H., Willamson, J. R., and Vagelos, P. R., 1970, Localization of acyl carrier protein in Escherichia coli, Nature (London) 228:338.

    Article  Google Scholar 

  • Wood, W. I., Peterson, D. O., and Bloch, K., 1978, Subunit structure of Mycobacterium smegmatis fatty acid synthetase, J. Biol. Chem. 253:2650.

    PubMed  CAS  Google Scholar 

  • Yamada, K., and Komagata, K., 1970a, Taxonomic studies on coryneform bacteria. II. Principal amino acids in the cell wall and their taxonomic significance, J. Gen. Appl. Microbiol. 16:103.

    Article  CAS  Google Scholar 

  • Yamada, K., and Komagata, K., 1970b, Taxonomic studies on coryneform bacteria III. DNA base composition of coryneform bacteria, J. Gen. Appl. Microbiol. 16:215.

    Article  Google Scholar 

  • Yamada, Y., Inoue, G., Tahara, Y., and Kondo, K., 1976, The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms, J. Gen. Appl. Microbiol. 22:203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kawaguchi, A., Seyama, Y. (1984). Thermal Control of Fatty Acid Synthetases in Bacteria. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics