Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 99))

  • 35 Accesses

Abstract

It has become clear over the past fifteen years that the cells in organized tissues commonly form interconnected systems. The cell-to-cell interaction arises when the plasma membrane of individual cells contact each other. At the level of these contacts a specialization of the cell surface takes place, which exhibits various structural differentiations depending on the cell-to-cell interaction. The name gap junction is now widely accepted for the cell-to-cell interaction where the two adjacent cells can exchange part of their molecular content (metabolic coupling) or different ions (ionic coupling). Several reviews have been published on the structural and functional aspects of the gap junction (1–2–3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Peracchia, Inter. Rev. Cytol., 66: 81–146 (1980). 358

    Google Scholar 

  2. F. Mazet and J.C. Ehrhart, J. Physiol. Paris, 76: 529–549 (1980).

    PubMed  CAS  Google Scholar 

  3. W.R. Loewenstein, Physiological Review, 61: 829–913 (1981).

    CAS  Google Scholar 

  4. S. Weidmann, J. Physiol. London, 118: 348–360 (1952).

    PubMed  CAS  Google Scholar 

  5. Y. Kanno and W.R. Loewenstein, Science, 143: 959–960 (1964).

    Article  PubMed  CAS  Google Scholar 

  6. W.R. Loewenstein, Ann. N.Y. Acad. Sci., 137: 441–472 (1966).

    Article  PubMed  CAS  Google Scholar 

  7. J.P. Revel and M.J. Karnovsky, J. Cell Biol., 33 C: 7–18 (1967).

    Google Scholar 

  8. E.L. Benedetti and P. Emmelot, J. Cell Biol., 38: 15–28 (1968).

    Article  PubMed  CAS  Google Scholar 

  9. J.D. Sheridan, M. Hammer-Wilson, D. Preus and R.G. Jonhson, J. Cell Biol., 76: 532–544 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. S. Gabella and D. Blundell, J. Cell Biol., 82: 239–247 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. F. Mazet and J. Cartaud, J. Cell Sci., 22: 427–434 (1976).

    PubMed  CAS  Google Scholar 

  12. R.W. Kensler, P. Brink and M.M. Dewey, J. Cell Biol., 73: 768–781 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. E. Raviola and N.B. Gilula, Proc. Natl. Acad. Sci. USA, 70: 1677–1681 (1973).

    Article  CAS  Google Scholar 

  14. Y. Shibata and T. Yamamoto, J. Ultrastruc. Res., 67: 79–88 (1979).

    Article  CAS  Google Scholar 

  15. D. Gros, J.P. Mocquard, C.E. Challice and J. Schrevel, J. Cell Sci., 30: 45–61 (1978).

    PubMed  CAS  Google Scholar 

  16. F. Mazet, Develop. Biol., 60: 139–152 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. W.R. Loewenstein, Y. Kanno and S.J. Socolar, Nature London, 274: 133–136 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. P.N.T. Unwin and G. Zampighi, Nature London, 283: 545–549 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. P.N.T. Unwin and P.D. Ennis, Nature London, 307: 609–613 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. L. Makowski, D.L.D. Caspar, D.A. Goodenough and W.C. Phillips, Biophys. J., 37: 189–191 (1982).

    Article  PubMed  CAS  Google Scholar 

  21. D. Dahl and G. Isenberg, J. Membrane Biol., 53: 63–75 (1980).

    Article  CAS  Google Scholar 

  22. J. Delèze and J.C. Hervé, J. Membrane Biol., 74: 203–215 (1983).

    Article  Google Scholar 

  23. C. Peracchia, J. Cell Biol., 72: 628–641 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. C. Peracchia and L.L. Peracchia, J. Cell Biol., 87: 708–718 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. C. Peracchia and L.L. Peracchia, J. Cell Biol., 87: 719–727 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. K.L. Campbell and D.F. Albertini, Tissue and Cell, 13: 651–668 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. W.M. Lee, D.C. Cran and N.J. Lane, J. Cell Sci., 57: 215–228 (1982).

    PubMed  CAS  Google Scholar 

  28. L. Turin and A.E. Warner, J. Physiol. London, 300: 489–504 (1980).

    PubMed  CAS  Google Scholar 

  29. O. Rougier, G. Vassort and R. StampfIi, Pflügers Arch. Physiol., 301: 91–108 (1968).

    Article  CAS  Google Scholar 

  30. I. Dunia, F. Mazet, J.L. Mazet and G. Vassort, J. Physiol. London, 349: 46 pp.

    Google Scholar 

  31. F. Mazet, I. Dunia, G. Vassort and J.L. Mazet, J. Cell Sci., (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Mazet, F. (1985). Relation between Structure and Function of Gap Junctions. In: Marthy, HJ. (eds) Cellular and Molecular Control of Direct Cell Interactions. NATO ASI Series, vol 99. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5092-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5092-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5094-1

  • Online ISBN: 978-1-4684-5092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics