Skip to main content

Chemistry of Covalent Binding: Studies with Bromobenzene and Thiobenzamide

  • Chapter
Biological Reactive Intermediates III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 197))

Abstract

The concept that chemically reactive metabolites of foreign substances could react covalently with cellular constituents to cause biological injury was introduced by J. A. Miller and E. C. Miller almost 40 years ago. 1–3 Since then considerable effort has been spent investigating the chemistry, biochemistry and biological consequences of reactive metabolic intermediates. Our laboratory has been interested in the metabolic activation, covalent binding and hepatotoxicity of two relatively simple organic compounds, bromobenzene and thiobenzamide. Our long term objective has been to determine the identity of their reactive metabolites, the chemistry of their covalent binding to cellular macromolecules and the relationship of the various types of covalent binding events to the biological changes which follow. This report summarizes some of our recent efforts toward these objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. C. Miller and J. A. Miller, The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 7: 468–480 (1947).

    CAS  Google Scholar 

  2. E. C. Miller and J. A. Miller, In vivo combinations between carcinogens and tissue constituents and their possible role in carcinogenesis. Cancer Res. 12: 547–556 (1952).

    Google Scholar 

  3. J. A. Miller, Carcinogenesis by chemicals: an overview. Cancer Res. 30: 559–576 (1970).

    PubMed  CAS  Google Scholar 

  4. B. B. Brodie, W. D. Reid, A. K. Cho, G. Sipes, G. Krishna and J. R. Gillette, Possible mechanism of liver necrosis caused by aranatic organic compounds. Proc. Nat. Acad. Sci. (U.S.), 68: 160–164 (1971).

    Article  CAS  Google Scholar 

  5. D. J. Jollow, J. R. Mitchell, N. Zampaglione and J. R. Gillette, Branobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite, Pharmacology. 11: 151–169 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. S. Hesse, T. Wolf and M. Mezger, Involv orient of phenolic metabolites in the irreversible protein-binding of 14C-branobenzene catalyzed by rat liver microsomes. Arch. Toxicol., Suppl. 4, 358–362 (1980).

    Article  CAS  Google Scholar 

  7. J. W. Dodgson, The reaction of p-benzoquinone with sulphurous acid and with alkali. Part I. J. Chem. Soc., 105: 2435–2443 (1914).

    Article  CAS  Google Scholar 

  8. K. T. Finley, The addition-substitution chemistry of quinones, in: “The chemistry of quinoid compounds, S. Patai, ed., John Wiley and Sons, New York (1974), pp 880–900.

    Google Scholar 

  9. T. J. Monks, L. R. Pohl, J. R. Gillette, M. Hong, R. J. Highet, J. A. Ferrretti and J. A. Hinson, Stereoselective formation of two bromobenzene-glutathione conjugates. Chem.-Biol. Interactions 41: 203–216 (1982).

    CAS  Google Scholar 

  10. R. P. Hanzlik, K. Hogberg and C. M. Judson, Microsomal hydroxylation of specifically deuterated monosubstituted benzenes. Evidence for direct aromatic hydroxylation. Biochemistry 23: 3048–3055 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. J. W. Daly, D. M. Jerina and B. Witkop, Arene oxides and the NIHshift: the metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28: 1129–1149 (1972).

    Article  PubMed  CAS  Google Scholar 

  12. R. P. Hanzlik and J. R. Cashman, Micrrosomal metabolism of thioben-zamide and thiobenzamide S-oxide. Drug Metab. Disposition, 11: 201–205 (1983).

    CAS  Google Scholar 

  13. R. E. Tynes and E. Hodgson, Oxidation of thiobenzamide by the FAD-containing and cytochrome P-450-dependent monooxygenases of liver and lung microsomes. Biochen. Pharmacol. 33: 3419–3428 (1983).

    Article  Google Scholar 

  14. M. Younes, Involvanent of reactive oxygen species in the microsomal S-oxidation of thiobenzamide. Experientia, 41: 479–480 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. J. R. Cashman and R. P. Hanzlik, Oxidation and other reactions of thiobenzamide derivatives of relevance to their hepatotoxicity. J. Org. Chem. 47: 4645–4650 (1982).

    Article  CAS  Google Scholar 

  16. R. P. Hanzlik, J. R. Cashman and G. J. Traiger, Relative hepatotoxicityof substituted thiobenzamides and thiobenzamide S-oxides in the rat. Toxicol. Appl. Pharmacol. 55: 260–272 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. J. R. Cashman, K. K. Parikh, G. J. Traiger and R. P. Hanzlik, Relative hepatotoxicity of ortho and meta monosubstituted thiobenzamides in the rat. Chem.-Biol. Interactions 45: 341–347 (1983).

    CAS  Google Scholar 

  18. J. R. Cashman, G. J. Traiger and R. P. Hanzlik, Pneumotoxic effects of thiobenzamide derivatives. Toxicology, 23: 85–93 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. R. P. Hanzlik, K. P. Vyas and G. J. Traiger, Substituent effects on the hepatotoxicity of thiobenzamide derivatives in the rat. Toxicol. Appl. Pharmacol., 46: 685–694 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. J. R. Cashman, Ph.D. Thesis, University of Kansas, 1982.

    Google Scholar 

  21. D. W. Gottschall, D. A. Penney, G. J. Traiger and R. P. Hanzlik, Oxidation of N-methylthiobenzamide and N-methylthiobenzamide S-oxide by liver and lung microsomes. Toxicol. Appl. Pharmacol., 78: 332–341 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. D. A. Penney, D. W. Gottschall, R. P. Hanzlik and G. J. Traiger, The role of metabolism in N-methylthiobenzamide-induced pneunotoxicity. Toxicol. Appl. Pharmacol. 78: 323–331 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. M. H. Griffiths, J. A. Moss, J. A. Rose, and D. E. Hathway, The comparative metabolism of 2,6-dichlorothiobenzamide (Prefix) and 2,6-dichlorothiobenzonitrile in the dog and rat. Biochem. J. 98: 770–781 (1966).

    PubMed  CAS  Google Scholar 

  24. R. P. Hanzlik, Effects of substituents of reactivity and toxicity of chemically reactive intermediates. Drug Metab. Rev. 13: 207–234 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hanzlik, R.P. (1986). Chemistry of Covalent Binding: Studies with Bromobenzene and Thiobenzamide. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics