Skip to main content

Transforming Sequences Associated with Atherosclerotic Plaque DNA

  • Chapter
Cardiovascular Disease

Abstract

Proliferation of smooth muscle cells is considered to be essential to the development of atherosclerotic plaques. The stimulus to proliferation is unknown. According to the monoclonal hypothesis, which equates plaques with benign smooth muscle cell tumors. plaques arise via mutational or viral events rather than in response to tissue injury. Here, we provide direct evidence that molecular events heretofore associated only with tumor cells are common to plaque cells as well. We employed a DNA-mediated gene transfer assay that relies on the incorporation and expression of dominant, transforming DNA sequences by NIH 3T3 fibroblasts. Three distinct groups of human coronary artery plaque (hCAP) DNA samples transfected into NIH 3T3 cells gave rise to transformed foci. Each focus represents the clonal outgrowth of a single transformed cell. Foci were scored double blind by at least two investigators 24 days after transfection. Foci were picked individually from the primary transfectants and grown in mass culture. The DNA from cloned foci was employed successfully in a second round of transfection. The efficiency of focus formation with hCAP DNA was one-third to one-half of that for the positive control. T24 DNA. Focus DNA hybridized to nick-translated Ki-ras or Ha-ras probes failed to detect human fragments of these genes. For each of nine clones, primary focus cells were injected into male nu - /nu - mice (5 × 106 cells/mouse; five mice/group). Large oval-round tumors (>15 mm diameter) representing five different clones arose in 6/42 mice. These results are significantly different (χ2 = 4.67. p < 0.05) from those (0/30) obtained in control mice injected with untreated NIH 3T3 cells. DNA extracted from the tumors hybridized to the repetitive human ALU sequence. In summary, our results, which provide direct experimental support for the monoclonal hypothesis, demonstrate that hCAP DNA contains transforming sequences(s) that can be transmitted serially in vitro and are associated with tumor formation in vivo. DNA sequences that behave this way in cancer cells are called oncogenes. By analogy, we propose that one or more atherogenes plays a similar role in plaque cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, R., Vanderlaan, M., Burns, F., and Nishizumi, N., 1977, Effect of carcinogens on chicken atherosclerosis, Cancer Res. 37:2232–2235.

    PubMed  CAS  Google Scholar 

  • Balmain, A., and Pragnell, I., 1983, Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene, Nature 303:72–74.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A., Ramsden, M., Bowden, G. T., and Smith, J., 1984, Activation of the mouse cellular Harvey-rös gene in chemically induced benign skin papillomas, Nature 307:658–660.

    Article  PubMed  CAS  Google Scholar 

  • Benditt, E. P., and Benditt, J. M., 1973, Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Natl. Acad. Sci. U.S.A. 70:1753–1756.

    Article  PubMed  CAS  Google Scholar 

  • Bond, J. A., Yang, H.-Y. L., Majesky, M., Benditt, E., and Juchau, M., 1980, Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in chicken aortas: Monooxygenation, bioac-tivation to mutagens, and covalent binding to DNA in vitro, Toxicol. Appl. Pharmacol. 52:323–335.

    Article  PubMed  CAS  Google Scholar 

  • Boutwell, R. K., 1974, The function and mechanism of promoters of carcinogenesis, CRC Crit. Rev. Toxicol. 2:419–443.

    Article  PubMed  CAS  Google Scholar 

  • Burns, F., Vanderlaan, M., Snyder, E., and Albert, R., 1978, Induction and progression kinetics of mouse skin papillomas, in: Carcinogenesis ,Vol. 2 (T. Slaga, A. Sivak, and R. Boutwell, eds.), Raven Press, New York, pp. 91–96.

    Google Scholar 

  • Clarke, M., Westin, E., Schmidt, D., Josephs, S., Ratner, L., Wong-Staal, F., Gallo, R., and Reitz, M., Jr., 1984, Transformation of NIH3T3 cells by a human c-sis DNA clone, Nature 308:464–466.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, C., Park, M., Blair, D., Tainsky, M., Huebner, K., Croce, C., and VandeWoude, G., 1984. Characterization of human transforming genes from chemically transformed teratocarcinoma and pancreatic cell lines, Nature 311:29–33.

    Article  PubMed  CAS  Google Scholar 

  • Fabricant, C., Fabricant, J., Litrenta, M., and Minick, C. R., 1978, Virus-induced atherosclerosis, J. Exp. Med. 148:335–340.

    Article  PubMed  CAS  Google Scholar 

  • Garte, S. J., Hood, A., Hochwalt, A., D’Eustachio, P., Snyder, C., Segal, A., and Albert, R., 1985, Carcinogen specificity in the activation of transforming genes by direct-acting alkylating agents, Carcinogenesis 6:1709–1712.

    Article  PubMed  CAS  Google Scholar 

  • Geer, J. C., Mc-Gill, H. C., Jr., and Strong, J. P., 1961, The fine structure of human atherosclerotic lesions. Am. J. Pathol. 38:263–287.

    PubMed  CAS  Google Scholar 

  • Gresham, G. A., and Howard, A. N., 1963, Comparative histopathology of the atherosclerotic lesion, J. Athero. Res. 3:161–177.

    Article  CAS  Google Scholar 

  • Guerrero, I., Calzada, P., Mayer, A., and Pellicer, A., 1984, A molecular approach to leukemogenesis: Mouse lymphomas contain an activated c-ras oncogene, Proc. Natl. Acad. Sci. U.S.A. 81:202– 205.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar, D., Fabricant, C. G., Minick, C. R., and Fabricant, J., 1986, Virus-induced atherosclerosis. Herpesvirus infection alters aortic cholesterol metabolism and accumulation. Am. J. Pathol. 122:62– 70

    PubMed  CAS  Google Scholar 

  • Haust, M. D., More, R. H., and Movat, H. Z., 1960, The role of smooth muscle cell in the fibrogenesis of arteriosclerosis. Am. J. Pathol. 37:377–389.

    PubMed  CAS  Google Scholar 

  • Land, H., Parada, L., and Weinberg, R., 1983, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778.

    Article  PubMed  CAS  Google Scholar 

  • Majesky, M., Reidy, M., Benditt, E., and Juchau, M., 1985, Focal smooth muscle proliferation in the aortic intima produced by an initiation-promotion sequence, Proc. Natl. Acad. Sci. U.S.A. 82:3450–3454.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J., 1983, Molecular Cloning, (A Laboratory Manual), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • NHLI Task Force on Arteriosclerosis, 1972, Arteriosclerosis (Publ. 72–219) ,DHEW, Washington.

    Google Scholar 

  • Penn, A., Batastini, G., and Albert, R., 1981a. Age-dependent changes in prevalence, size and proliferation of arterial lesions in the cockerel. II. Carcinogen-associated lesions, Artery 9:382–393.

    PubMed  CAS  Google Scholar 

  • Penn, A., Batastini, G., Solomon, J., Burns, F., and Albert, R., 1981b, Dose-dependent size increases of aortic lesions following chronic exposure to 7,12-dimethylbenz[a]anthracene (DMBA), Cancer Res. 41:588–592.

    PubMed  CAS  Google Scholar 

  • Penn, A., Garte, S. G., Warren, L., Nesta, D., and Mindich, B., 1986, Transforming gene in human atherosclerotic plaque DNA, Proc. Natl. Acad. Sci. U.S.A. 83:7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Pulciani, S., Santos, E., Lauver, A., Long, L., Aaronson, S., and Barbacid, M., 1982, Oncogenes in solid human tumors, Nature 300:539–542.

    Article  PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P., 1977, Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase 1,7. Mol. Biol. 113:237–251.

    Article  CAS  Google Scholar 

  • Schmid, R., and Deininger, P., 1975, Sequence organization of the human genome, Cell ,6:345–358.

    Article  PubMed  CAS  Google Scholar 

  • Shih, C., and Weinberg, R., 1982, Isolation of a transforming sequence from a human bladder carcinoma cell line, Cell 29:161–169.

    Article  PubMed  CAS  Google Scholar 

  • Shih, C., Padhy, L., Murray, M., and Weinberg, R., 1981, Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts, Nature 290:261–264.

    Article  PubMed  CAS  Google Scholar 

  • Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 110:503–517.

    Article  Google Scholar 

  • Stary, H. C., and McMillan, G. C., 1970, Kinetics of cellular proliferation in experimental atherosclerosis, Arch. Pathol. 89:173–183.

    PubMed  CAS  Google Scholar 

  • Sukumar, S., Notario, V., Martin-Zanca, D., and Barbacid, M., 1983, Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-l locus by single point mutations. Nature 306:658–661.

    Article  PubMed  CAS  Google Scholar 

  • Tabin, C., Bradley, S., Bargmann, C., Weinberg, R., Papageorge, A., Scolnick, E., Dhar, R., Lowy, D., and Chang, E., 1982, Mechanism of activation of a human oncogene, Nature 300:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., and Wigler, M., 1982, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature 300:762–765.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, W. A., Lee, K. T., and Kim, D. N., 1985. Cell population kinetics in atherogenesis. Cell births and losses in intimal cell mass-derived lesions in the abdominal aorta of swine, Ann. N.Y. Acad. Sci. 454:305–315.

    Article  PubMed  CAS  Google Scholar 

  • Virchow, R., 1856, Gesammelte Abhandlungen zur Wissenschaftlichen Medizin ,Meininger, Frankfurt-am-Main, pp. 458–463.

    Google Scholar 

  • Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L., 1979, DNA-mediated transfer of the adenine phosphoribosyltransferase locus in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 76:1373–1376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Penn, A., Garte, S.J., Warren, L. (1987). Transforming Sequences Associated with Atherosclerotic Plaque DNA. In: Gallo, L.L. (eds) Cardiovascular Disease. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5296-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5296-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5298-3

  • Online ISBN: 978-1-4684-5296-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics