Skip to main content

Low Frequency Coherent Vibrations of DNA: The Role of the Hydration Shell and Phosphate-Phosphate Interactions

  • Chapter
Structure and Dynamics of Nucleic Acids, Proteins, and Membranes

Abstract

The vibrational modes of DNA span a range from high frequency localized vibrations, through low frequency collective modes to over-damped Brownian fluctuations. Presumably the most important motions from a biological standpoint are the lowest frequency vibrations (involving the largest units) that are not overdamped by the viscous action of the hydration shell. I describe observations of low frequency collective vibrational modes of DNA which couple to the hydration shell. The dynamics of the hydration shell becomes important in a frequency “window” between the viscoelastic transition of the primary hydration shell (roughly 4 GHz.) and the viscoelastic transition of the secondary shell (roughly 80 GHz.). The role of coupled solvent — DNA dynamics in the A to B and B to Z transition is discussed in terms of the phosphate-phosphate interactions which probably dominate conformational stability. Excitations of coupled modes of the DNA-hydration shell system may also account for the resonant microwave absorption observed in restriction fragments and plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.M. Lindsay, J. Powell, E.W. Prohofsky and K.V. Devi-Prasad, in “Structure and Motion: Membranes, Nucleic Acids and Proteins,” eds. E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, Adenine, New York, p. 531 (1985).

    Google Scholar 

  2. W.C. Kerr and A.R. Bishop, “The Dynamics of Structural Phase Transitions in Highly Anisotropic Systems,” preprint (1986).

    Google Scholar 

  3. B.H. Dorfman and L.L. Van Zandt, Biopolymers, 23, 2639 (1983).

    Article  Google Scholar 

  4. M. Kohli and L.L. Van Zandt, Biopolymers, 21, 1399 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. M.L. Swicord, G.S. Edwards, J.L. Sagripanti and C.C. Davis, Biopolymers, 22, 2513 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. G.S. Edwards, C.C. Davis, J.D. Saffer and M.L. Swicord, Phys. Rev. Lett., 53, 1284 (1984).

    Article  CAS  Google Scholar 

  7. S.M. Lindsay and J. Powell, in “Structure and Dynamics: Nucleic Acids and Proteins,” eds. E. Clementi and R.H. Sarma, Adenine, New York, p. 241 (1983).

    Google Scholar 

  8. C. DeMarco, S.M. Lindsay, M. Pokorny, J. Powell and A. Rupprecht, Biopolymers, 24, 2035 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. S.A. Lee, J. Powell, N.J. Tao, G. Lewen, S.M. Lindsay and A. Rupprecht, to be published.

    Google Scholar 

  10. N.J. Tao, S.M. Lindsay and A. Rupprecht, Biopolymers, in press (1986).

    Google Scholar 

  11. Y. Tominaga, M. Shida, K. Kubota, H. Urabe, Y. Nishimura and M. Tsuboi, J. Chem. Phys., 83, 5972 (1985).

    Article  CAS  Google Scholar 

  12. M. Falk, K.A. Hartman and R.C. Lord, J. Am. Chem. Soc., 84, 3843 (1962). In this same issue, see also the two papers immediately following that by Falk et al.

    Article  CAS  Google Scholar 

  13. M.L. Kopka, A.L. Fratini, H.R. Drew and R.E. Dickerson, J. Mol. Biol., 163, 129 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. E. Clementi and G. Corongiu, Biopolymers, 20, 351 and 2427 (1981)

    Google Scholar 

  15. Biopolymers, 21, 763 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. D.M. Soumpasis, Proc. Nat. Acad. Sci. (USA), 81, 5116 (1984).

    Article  CAS  Google Scholar 

  17. D.M. Soumpasis, J. Wiechen and T.M. Jovin, “Relative Stabilities and Transitions of DNA Conformations in 1:1 Electrolytes: A Theoretical Study,” preprint (1985).

    Google Scholar 

  18. S.M. Lindsay, “Progress and Challenges in Biological and Synthetic Polymer Research,” eds. C. Kawabata and A.R. Bishop, Ohmska, Tokyo (1986).

    Google Scholar 

  19. The equilibration of Z-DNA is independent of concentration over six orders of magnitude — F.M. Pohl, A. Ranade and M. Stockburger, Biochim. Biophys. Acta, 335, 85 (1973).

    Google Scholar 

  20. This is an extension of an experiment first performed by Herbeck et al. — R. Herbeck, T.J. Yu and W.L. Peticolas, Biochemistry, 15, 2656 (1976).

    Article  PubMed  CAS  Google Scholar 

  21. G. Lewen, S.M. Lindsay, N.J. Tao, T. Weidlich, R.J. Graham and A. Rupprecht, Biopolymers, 25, 765 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. B.N. Conner, C. Yoon, J.L. Dickerson and R.E. Dickerson, J. Mol. Biol., 174, 663 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. T. Weidlich, S.M. Lindsay and A. Rupprecht, “The Optical Properties of Li-and Na-DNA Films,” preprint (1986).

    Google Scholar 

  24. S.C. Harvey, Nucleic Acids Res., 11, 4867 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. W.K. Olson, A.R. Srivasan, N.L. Marky and V.N. Balaji, Cold Spring Harbor Symp. Quant. Biol., 47, 229 (1983).

    Article  PubMed  Google Scholar 

  26. M.B. Hakim, S.M. Lindsay and J. Powell, Biopolymers, 23, 1185 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. A.C. Scott, Phys. Rev., A31, 3518 (1985).

    Google Scholar 

  28. A.C. Scott and J.H. Jensen, Physics Letters, 109A, 243 (1985).

    CAS  Google Scholar 

  29. L.L. Van Zandt, J. Biomol. Str. Dyns., in press (1986).

    Google Scholar 

  30. L.L. Van Zandt, “Why Structured Water Causes Sharp Absorption by DNA at Microwave Frequencies,” preprint (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lindsay, S.M. (1986). Low Frequency Coherent Vibrations of DNA: The Role of the Hydration Shell and Phosphate-Phosphate Interactions. In: Clementi, E., Chin, S. (eds) Structure and Dynamics of Nucleic Acids, Proteins, and Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5308-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5308-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5310-2

  • Online ISBN: 978-1-4684-5308-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics