Skip to main content

Kinetic Aspects of Follicular Development in the Rat

  • Chapter
Regulation of Ovarian and Testicular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 219))

Abstract

The ovary has many similarities to other “renewal tissues” in adults. Renewal tissues are those in which differentiated, functional cells are continuously being replaced by proliferation of more primitive cells. These tissues are composed of a hierarchy of cells: at one end of the hierarchy are stem cells which are less differentiated and can divide without limit; at the other end are mature cells which are highly differentiated and have no capacity for proliferation (Mackillop et al., 1983). When a stem cell divides, each daughter cell has a choice: it can either remain a stem cell, or it can embark on a course of “clonal expansion” leading irreversibly to terminal differentiation (Fig 1). Daughter cells which embark on the second course are known as “transitional cells (Selby et al., 1983) or “committed progenitor cells” (Fitchen et al., 1981). Transitional cells have a limited capacity for cell division. They exhibit a continuous gradient of properties along a unidirectional vector; as cells move down the hierarchy, they acquire the differentiated features associated with specific tissue function, and they progressively lose the potential to divide (Mackillop et al., 1983). The more highly differentiated progeny greatly outnumber the less differentiated progenitor cells within the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adashi EY, Hsueh AJW, 1981. Stimulation of B-adrenergic responsiveness by follicle-stimulating hormone in rat granulosa cells in vitro and in vivo. Endocrinology 108:2170–2178

    Article  PubMed  CAS  Google Scholar 

  • Aguado LI, Ojeda SR, 1984. Prepubertal ovarian function is finely regulated by direct adrenergic influences: role of noradrenergic innervation Endocrinology 114:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam A, Lindner HR, Groschel-Stewart U, 1976. Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence Anat Rec 187:311–328

    Article  Google Scholar 

  • Arendsen de Wolff-Exalto E, 1982. Influence of gonadotrophins on early follicle cell development and early oocyte growth in the immature rat J Reprod Fertil 66:537–542

    Article  Google Scholar 

  • Bassett DL, 1943. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73:251–291

    Article  Google Scholar 

  • Bogovich K, Richards JS, 1984. Androgen synthesis during follicular development: evidence that rat granulosa cell 17-ketosteroid reductase is independent of hormonal regulation. Biol Reprod 31:122–131

    Article  PubMed  CAS  Google Scholar 

  • Bogovich K, Richards JS, Reichert LE, 1981. Obligatory role of luteinizing hormone (LH) in the initiation of preovulatory follicular growth in the pregnant rat: specific effects of hCG and FSH on LH receptors and steroidogenesis in theca and granulosa cells. Endocrinology 109:860–867

    Article  PubMed  CAS  Google Scholar 

  • Bortolussi M, Marini G, Dal Lago A, 1977. Autoradiographic study of the distribution of LH(hCG) receptors in the ovary of untreated and gonadotrophin-primed immature rats. Cell Tissue Res 183:329–342

    Article  PubMed  CAS  Google Scholar 

  • Bortolussi M, Marini G, Reolon ML, 1979. A histochemical study of the binding of 1251-hCG to the rat ovary throughout the estrous cycle Cell Tissue Res 197:213–226

    Article  PubMed  CAS  Google Scholar 

  • Braw RH, Tsafriri A, 1980. Follicles explanted from pentobarbitone-treated rats provide a model for atresia. J Reprod Fertil 59:259–265

    Article  PubMed  CAS  Google Scholar 

  • Brown G, Bunce CM, Guy GR, 1985. Sequential determination of lineage potentials during haemopoiesis Br J Cancer 52:681–686

    Article  PubMed  CAS  Google Scholar 

  • Brown-Grant K, Exley D, Naftolin F, 1970. Peripheral plasma oestradiol and luteinizing hormone concentrations during the oestrous cycle of the rat. J Endocrinol 48:2 95–2 96

    Google Scholar 

  • Bryant-Greenwood GD, Jeffrey R, Ralph MM, Seamark RF, 1980. Relaxin production by the porcine ovarian Graafian follicle in vitro. Biol Reprod 23:792–800

    Article  PubMed  CAS  Google Scholar 

  • Butcher RL, Collins WE, Fugo NW, 1974. Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17B throughout the four-day estrous cycle of the rat. Endocrinology 94:1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Byskov AGS, 1978. “Follicular Atresia”. In: Jones RE (ed.), The Vertebrate Ovary NY Plenum Press pp. 533–562

    Google Scholar 

  • Byskov AGS, Lintern-Moore S, 1973. Follicle formation in the immature mouse ovary: the role of the rete ovarii. J Anat 116:207–217

    PubMed  CAS  Google Scholar 

  • Byskov AG, Hoyer PE, Westergaard L, 1985. Origin and differentiation of the endocrine cells of the ovary. J Reprod Fertil 75: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Canipari R, Strickland S, 1986. Studies on the hormonal regulation of plasminogen activator production in the rat ovary. Endocrinology 118: 1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Carson R, Smith J, 1986. Development and steroidogenic activity of preantral follicles in the neonatal rat ovary. J Endocrinol 110:87–92

    Article  PubMed  CAS  Google Scholar 

  • Carson RS, Richards JS, Kahn LE, 1981. Functional and morphological differentiation of theca and granulosa cells during pregnancy in the rat: dependence on increased basal luteinizing hormone. Endocrinology 109:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Chabot JG, St. Arnaud R, Walker P, Pelletier G, 1986. Distribution of epidermal growth factor receptors in the rat ovary. Mol Cell Endocrinol 44:99–108

    Article  PubMed  CAS  Google Scholar 

  • Chang SCS, Ryan RJ, Kang YH, Anderson WA, 1978. Some observations on the development and function of ovarian follicles. In Sreenan JR (ed.), Control of Reproduction in the Cow. The Hauge, Martinus Nijhoff, pp. 3–33

    Chapter  Google Scholar 

  • Costlow ME, McGuire WL, 1977. Autoradiographic localization of the binding of 125I-labelled prolactin to rat tissues in vitro. J Endocrinol 75: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Cunha GR, Chung LWK, Shannon JM, Taguchi O, Fuji H, 1983. Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions Rec Prog Hor Res 39:559–598

    CAS  Google Scholar 

  • Daniel SAJ, Armstrong DT, 1984. Site of action of androgens on FSH-induced aromatase activity in cultured rat granulosa cells. Endocrinology 114:1975–1982

    Article  PubMed  CAS  Google Scholar 

  • DePaolo LV, Wise PM, Anderson LD, Barraclough CA, Channing CP, 1979. Suppression of the pituitary follicle-stimulating hormone secretion during proestrus and estrus in rats by porcine follicular fluid: possible site. Endocrinology 104:402–408

    Article  PubMed  CAS  Google Scholar 

  • DePaolo LV, Shander D, Wise PM, Barraclough CA, Channing CP, 1979. Identification of inhibin-like activity in ovarian venous plasma of rats during the estrous cycle. Endocrinology 105:647–658

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil G, 1948. Sur l’existence d’une substance inductrice a action limitee et locale pour la metaplasie thecale des cellules du stroma cortical ovarien. Ann Endocrinol 9:434–442

    Google Scholar 

  • Erickson GF, Hsueh AJW, 1978. Induction of aromatase activity by follicle stimulating hormone in rat granulosa cells in vivo and in vitro Endocrinology 102:1275–1282

    Article  PubMed  CAS  Google Scholar 

  • Erickson GF, Magoffin DA, Dyer CA, Hofeditz C, 1985. The ovarian androgen producing cells: a review of strueture/function relationships Endocrinol Rev 6:371–399

    Article  CAS  Google Scholar 

  • Eshkol A, Lunenfeld B, 1972. Gonadotropic regulation of ovarian development in mice during infancy. In: Saxena BB, Beling CG, Gandy HM, (eds.), The Gonadotropins. New York, John Wiley and Sons, pp. 335–346

    Google Scholar 

  • Familiari G, Correr S, Motta PM, 1981. Gap junctions in theca interna cells of developing and atretic follicles Adv Morph Cells and Tissue 11th Intl Congress, pp. 337–348

    Google Scholar 

  • Fitchen JH, Foon KA, Cline MJ, 1981. The antigenic characteristics of hematopoietic stem cells. New Eng J Med 305:17–25

    Article  PubMed  CAS  Google Scholar 

  • Fox H 1985. Sex cord-stromal tumours of the ovary. J Path 145:127–148

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg RL, Reiter EO, Ross GT, 1973. Follicle response to exogenous gonadotropins: an estrogen-mediated phenomenon. Fertil Steril 24: 121–127

    PubMed  CAS  Google Scholar 

  • Guraya SS, Greenwald GS, 1964. Histochemical studies on the interstitial gland in the rabbit ovary. Am J Anat 114:495–520

    Article  PubMed  CAS  Google Scholar 

  • Guraya SS, Greenwald GS, 1964. A comparative histochemical study of interstitial tissue and follicular atresia in the mammalian ovary. Anat Rec 149:411–434

    Article  PubMed  CAS  Google Scholar 

  • Hage AJ, Groen-Klevant AG, and Welschen R, 1978. Follicle growth in the immature rat ovary. Acta Endocrinol 88:375–382

    PubMed  CAS  Google Scholar 

  • Hillier SG, DeZwart FA, 1981. Evidence that granulosa cell aromatase induction/activation by FSH is an androgen receptor-regulated process in vitro. Endocrinology 109:1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, 1982. Follicular recruitment in long-term hemicastrate rats. Biol Reprod 27:48–53

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, 1983. Compensatory ovarian hypertrophy in the long-term hemicastrate rat: size distribution of growing and atretic follicles Biol Reprod 28:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, 1984. Stathmokinetic analysis of granulosa cell proliferation in antral follicles of cyclic rats. Biol Reprod 31: 52–58

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, 1985. Patterns of Cell Proliferation in Follicles Approaching Ovulation: In Toft DO, Ryan RJ (eds.), Proceedings of the Fifth Ovarian Workshop. IL Ovarian Workshops, Inc., pp.249–253

    Google Scholar 

  • Hirshfield AN, 1985. Comparison of granulosa cell proliferation in small follicles of hypophysectomized, prepubertal and mature rats. Biol Reprod 32:979–987

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, 1986. Effect of a low dose of pregnant mare’s serum gonadotropin on follicular recruitment and atresia in cycling rats Biol Reprod 35:113–118

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, Midgley AR, 1978. Morphometric analysis of follicular development in the rat. Biol Reprod 19:597–605

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN, DePaolo LV, 1981. Effect of suppression of the surge of follicle stimulating hormone with porcine follicular fluid on follicular development in the rat. J Endocrinol 88:67–71

    Article  PubMed  CAS  Google Scholar 

  • Hisaw FI 1947. Development of the Graafian follicle and ovulation Physiol Rev 27:95–119

    PubMed  CAS  Google Scholar 

  • Hoak DC, Schwartz NAB, 1980. Blockade of recruitment of ovarian follicles by suppression of the secondary surge of follicle-stimulating hormone with porcine follicular fluid. PNAS(USA) 77:4953–4956

    Article  CAS  Google Scholar 

  • Hunzicker-Dunn M, Jungmann RA, Evely L, Hadawi GL, Maizels ET, West, 1984. Modulation of soluble ovarian adenosine 3,5-monophosphate-dependent protein kinase activity during prepubertal development of the rat. Endocrinol 115:302–311

    Article  CAS  Google Scholar 

  • Kang Y, 1974. Development of the zona pellucida in the rat oocyte. Am J Anat 139:535–566

    Article  PubMed  CAS  Google Scholar 

  • Kent J, Ryle M, 1975. Histochemical studies on three gonadotrophin-responsive enzymes in the infantile mouse ovary. J Reprod Fértil 42: 519–536

    Article  PubMed  CAS  Google Scholar 

  • Koos RD, Le Maire WD, 1983. Evidence for an angiogenic factor in rat follicles: In Greenwald GS, Terranova PF (eds.), Factors Regulating Ovarian Function. NY Raven Press, pp. 191–196

    Google Scholar 

  • LaPolt SPS, Matt DW, Shryne JE, Lu JHK, 1985. Analysis of ovarian follicular dynamics in aged and young female rats using continuous 3H-TdR infusion. Endocrine Society Abstract #924.

    Google Scholar 

  • Lacker HM, Beers WH, Meuli LE, Atkin E, 1987. A theory of follicle selection. Biol Reprod (in press)

    Google Scholar 

  • Lajtha LG, 1983. Stem cell concepts: In: Potten CS (ed.), Stem Cells: Their Identification and Characterization. Edinburgh Churchill, Livingstone, pp. 1–11

    Google Scholar 

  • Lintern-Moore S, Everitt AV, 1978. The effect of restricted food intake on the size and composition of the ovarian follicle population in the Wistar rat. Biol Reprod 19:688–691

    Article  PubMed  CAS  Google Scholar 

  • Lintern-Moore S, Moore GPM, 1979. The initiation of follicle and oocyte growth in the mouse ovary. Biol Reprod 20:773–778

    Article  PubMed  CAS  Google Scholar 

  • Lintern-Moore S, Pantelouris EM, 1976. Ovarian development in athymic nude mice IV. the effect of PMSG and oestradiol on the growth of the oocyte and follicle. Mech Aging and Devel 5:155–162

    Article  CAS  Google Scholar 

  • Louvet J-P, Harman SM, Schreiber JR, Ross GT, 1975. Evidence for a role of androgens in follicular maturation. Endocrinology 97:366–372

    Article  PubMed  CAS  Google Scholar 

  • Lu JHK, LaPolt PS, Nass TC, Matt DW, Judd HL, 1985. Relation of circulating estradiol and progesterone to gonadotropin secretion and es-trous cyclicity in aging female rats. Endocrinology 116:1953–1959

    Article  PubMed  CAS  Google Scholar 

  • Lunenfeld B, Kraiem Z, Eshkol A, 1975. The function of the growing follicle J Reprod Fertil 45:567–574

    Article  PubMed  CAS  Google Scholar 

  • Mackillop WJ, Ciampi A, Till JE, Buick RN, 1983. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays JNCI 70: 9–16

    PubMed  CAS  Google Scholar 

  • Maurer HR, 1981. Potential pitfalls of [3H] thymidine techniques to measure cell proliferation. Cell Tissue Kinet 14:111–120

    PubMed  CAS  Google Scholar 

  • May JV, Schomberg DW, 1981. Granulosa cell differentiation in vitro: the effect of insulin on growth and final integrity Biol Reprod 25: 421–431

    Article  PubMed  CAS  Google Scholar 

  • McLeod BJ, Haresign W, 1984. Evidence that progesterone may influence subsequent luteal function in the ewe by modulating preovulatory follicle development. J Reprod Fertil 71:381–386

    Article  PubMed  CAS  Google Scholar 

  • Merchant H, 1975. Rat gonadal and ovarian organogenesis with and without germ cells, an ultrastructural study. Develop Biol 44:1–21

    Article  PubMed  CAS  Google Scholar 

  • Merchant-Larios H, 1979. Origin of the somatic cells in the rat gonad: an autoradiographic approach. Ann Biol anim Bioch Biophys 19:1219–1229

    Article  Google Scholar 

  • Moore GPM, Lintern-Moore S, Peters H, and Faber M, 1974. RNA synthesis in the mouse oocyte. Cell Biol 60:416–422

    Article  CAS  Google Scholar 

  • Mueller PL, Schreiber JR, Lucky AW, Schulman JD, Rodbard D, Ross GT, 1978. Follicle stimulating hormone stimulates ovarian synthesis of proteoglycans in the estrogen-stimulated hypophysectomized immature female rat. Endocrinology 102:824–831

    Article  PubMed  CAS  Google Scholar 

  • Nicosia SV, Tojo R, 1979. Morphogenetic reaggregation and luteinization of mouse preantral follicle cells Am J Anat 156:401

    Article  PubMed  CAS  Google Scholar 

  • Nimrod A, Erickson GF, Ryan KJ, 1976, A specific FSH receptor in rat granulosa cells: properties of binding in vitro. Endocrinology 98: 56–64

    Article  PubMed  CAS  Google Scholar 

  • O’Shea JD, 1970. An ultrastructural study of smooth muscle-like cells in the theca externa of ovarian follicles in the rat. Anat Rec 167: 127–131

    Article  PubMed  Google Scholar 

  • Oakberg EF, 1979. Timing of oocyte maturation in the mouse and its relevance to radiation-indueed cell killing and mutational sensitivity. Mutat Res 59:39–48

    Article  PubMed  CAS  Google Scholar 

  • Oakberg EF, Tyrrell PD, 1975. Labelling of the zona pellucida of the mouse oocyte. Biol Reprod 12:477–482

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Smith JB, 1964. Role of fetal follicular cells in meiosis of mammalian oocytes. Cytogenetics 3:324–333

    Article  Google Scholar 

  • Parkening TA, Collins TJ, Elder FFB, 1985. Othotopic ovarian transplantation in young and aged C5BL/6J mice. Biol Reprod 32: 989–997

    Article  PubMed  CAS  Google Scholar 

  • Pedersen T, 1969. Follicle growth in the immature mouse ovary Acta Endocrinol 62:117–132

    PubMed  CAS  Google Scholar 

  • Pedersen T, 1970a. Follicle kinetics in the ovary of the cyclic mouse Acta Endocrinol 64:304–323

    PubMed  CAS  Google Scholar 

  • Pedersen T, 1970b. Cell population kinetics of the ovary of the immature mouse after FSH stimulation. In: Butt WR, Crooke AC, Ryle M (eds.), Gonadotropins and Ovarian Development. Edinburgh, E and S Livingstone pp. 312–324

    Google Scholar 

  • Pedersen T, Peters H, 1968. Proposal for a classification of oocytes and follicles in the mouse ovary. J Reprod Fertil 17:555–557

    Article  PubMed  CAS  Google Scholar 

  • Pedersen T, Peters H, 1971. Follicle growth and cell dynamics in the mouse ovary during pregnancy. Fertil Steril 22:42–52

    PubMed  CAS  Google Scholar 

  • Peters H, 1969. The development of the mouse ovary from birth to maturity Acta Endocrinol 62:98–116

    PubMed  CAS  Google Scholar 

  • Peters H, 1978. Folliculogenesis in mammals. In: Jones RE (eds.), The Vertebrate Ovary. NY Plenum Press, pp.121–140

    Google Scholar 

  • Presi J, Pospisil J, Figarova V, Krabec Z, 1974. Stage-dependent changes in binding of iodinated FSH during ovarian follicle maturation in rats Endocrinol Exp 8:291–298

    Google Scholar 

  • Rahamim E, Eshkol A, Lunenfeld B, 1976. Histochemical demonstration of delta5–3betal-hydroxysteroid dehydrogenase activity in ovaries of intact infant mice and mice treated with anti-gonadotropin. Fertil Steril 27:328–34.

    PubMed  CAS  Google Scholar 

  • Rao MC, Midgley AR, Richards JS, 1978. Hormonal regulation of ovarian cellular proliferation. Cell 14:71–78

    Article  PubMed  CAS  Google Scholar 

  • Research in Reproduction, 1986. More studies on biosynthesis by granulosa cells Research in Reproduction 18: 2.

    Google Scholar 

  • Richards JS, 1974. Estradiol binding to rat corpora lutea during pregnancy. Endocrinology 95:1046–1053

    Article  PubMed  CAS  Google Scholar 

  • Richards JS, 1975. Estradiol receptor content in rat granulosa cells during follicular development: modification by estradiol and gonadotropins. Endocrinology 97:1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Richards JS, Midgley AR Jr, 1976. Protein hormone action: a key to understanding ovarian follicular and luteal cell development. Biol of Reprod 14:82–94

    Article  CAS  Google Scholar 

  • Richards JS, Kersey KA, 1980. Changes in theca and granulosa cell function in antral follicles developing during pregnancy in the rat: gonadotropin receptors, cyclic AMP, and estradiol-17B. Biol Reprod 21:1185–1201

    Article  Google Scholar 

  • Roy SK, Greenwald GS, 1985. An enzymatic method for dissociation of intact follicles from the hamster ovary: histological and quantitative aspects. Biol Reprod 32:203–215

    Article  PubMed  CAS  Google Scholar 

  • Roy SK, Greenwald GS, 1987. In vitro steroidogenesis by primary to antral follicles in the hamster during the periovulatory period: effects of FSH, LH, and prolactin, Biol Reprod (in Press).

    Google Scholar 

  • Sachs L, 1986. Growth, differentiation and the reversal of malignancy Sci Am 254:40–47

    Article  PubMed  CAS  Google Scholar 

  • Sander HJ, Van Leeuwen ECM, de Jong FH, 1984. Inhibin-like activity in media from cultured rat granulosa cells collected throughout the oestrous cycle. J Endocrin 103:77–84

    Article  CAS  Google Scholar 

  • Sanders MM, Midgley AR, 1982. Rat granulosa cell differentiation: an in vitro model. Endocrinology 111:614–624

    Article  PubMed  CAS  Google Scholar 

  • Selby P, Buick RN, Tannock I, 1983. A critical appraisal of the “human tumor stem-cell assay”. NEJM 308:129–134

    Article  PubMed  CAS  Google Scholar 

  • Skinner MK, Dorrington JH, 1984. Control of fibronectin synthesis by rat granulosa cells in culture. Endocrinology 115:2029–2031

    Article  PubMed  CAS  Google Scholar 

  • Smith SS, Ojeda SR, 1986. Neonatal release of gonadotropins is essential for development of ovarian follicle-stimulating hormone (FSH) receptors. Biol Reprod 219–227

    Google Scholar 

  • Sugawara S, Umezu M, Takeuchi S, 1969. Effect of a single dose of human chorionic gonadotrophin on the ovulatory response of the immature rat J Reprod Fertil 20:333–335

    Article  PubMed  CAS  Google Scholar 

  • Talbert GB, Meyer RK, McShan WH, 1951. Effect of hypophysectomy at the beginning of proestrus on maturing follicles in the ovary of the rat. Endocrinology 49:687–694

    Article  PubMed  CAS  Google Scholar 

  • Uilenbroek Jth J, Van der Linden R, 1983. Changes in gonadotrophin binding to rat ovaries during sexual maturation Acta Endocrinol 103:413–419

    PubMed  CAS  Google Scholar 

  • Upadhyay S, Luciani JM, Zamboni L, 1979. The role of the mesonephros in the development of indifferent gonads and ovaries of the mouse. Ann Biol Anim Biochim Biophys 19:1179–1196

    Article  Google Scholar 

  • Upahdyay S, Zamboni L, 1982. Ectopic germ cells: natural model for the study of germ cell sexual differentiation. PNAS 79:6584–6586

    Article  Google Scholar 

  • Van de Wiel DFM, Erkens J, Koops W, Vos E, Van Landeghem AAJ, 1981. Periestrous and midluteal time courses of circulating LH, FSH, prolactin, estradiol-17B and progesterone in the domestic pig. Biol Reprod 24:223–233

    Article  PubMed  Google Scholar 

  • Van der Schoot P, DeGreef WJ, 1976. Dioestrous progesterone and pro-oestrous LH in 4- and 5-day cycles of female rats. J Endocrinol 70: 61–68

    Article  PubMed  Google Scholar 

  • Wang C, Leung A, 1983. Gonadotropins regulate plasminogen activator production by rat granulosa cells Endocrinology 112:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Wright NA, Appleton DR, 1980. The metaphase arrest technique: a critical review. Cell Tissue Kinet 13:643–663

    PubMed  CAS  Google Scholar 

  • Yanagishita M, Hascall VC, 1984. Metabolism of proteoglycans in rat ovarian granulosa cell culture. J Biol Chem 259 16:10260–10269

    PubMed  CAS  Google Scholar 

  • Ying SY, Greep RO, 1971. Responsiveness of follicles to gonadotropins during the estrous cycle of the rat. Endocrinology 89:294–297

    Article  PubMed  CAS  Google Scholar 

  • Zajicek G, 1977. The intestinal proliferon J. Theor. Biol. 67:515–521

    Article  PubMed  CAS  Google Scholar 

  • Zajicek G, 1979. Proliferon: the functional unit of rapidly proliferating organs. Med Hypotheses 5:161–174

    Article  PubMed  CAS  Google Scholar 

  • Zajicek G, Michaeli Y, Regev J, 1979. On the progenitor cell migration velocity. Cell Tiss Kinet 12:453–460

    CAS  Google Scholar 

  • Zamboni L, 1974. Fine morphology of the follicle wall and follicle cell-oocyte association. Biol Reprod 10:125–149

    Article  PubMed  CAS  Google Scholar 

  • Zamboni L, Bezard L, Mauleon P, 1979. The role of mesonephros in the development of the sheep fetal ovary. Ann Biol Anim Biochim Biophys 19:1153–1178

    Article  Google Scholar 

  • Zeleznik AJ, Midgley AJ, Reichert LE, 1974. Granulosa cell maturation in the rat: increasing binding of human chorionic gonadotropin following treatment with follicle-stimulating hormone in vivo. Endocrinology 95:818–825

    Article  PubMed  CAS  Google Scholar 

  • Zlotkin T, Farkash Y, Orly J, 1986. Cell specific expression of immuno-reactive cholesterol side chain cleavage cytochrome P-450 during follicular development in the rat ovary. Endocrinology 119:2809–2820

    Article  PubMed  CAS  Google Scholar 

  • Zoller LC, Weisz J, 1978. Structure and acid phosphatase activity in granulosa cells of preovulatory follicles in rat ovary. Anat Rec 190:592

    Google Scholar 

  • Zoller LC, Weisz J, 1979. A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and 3B-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat. Histochemistry 62:125–135

    Article  PubMed  CAS  Google Scholar 

  • Zor U, Strulovici B, Braw R, Lindner HR, Tsafriri, A, 1983. Follicle stimulating hormone-indueed prostaglandin E formation in isolated rat ovarian theca. J Endocrinol 97:43–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Hirshfield, A.N., Schmidt, W.A. (1987). Kinetic Aspects of Follicular Development in the Rat. In: Mahesh, V.B., Dhindsa, D.S., Anderson, E., Kalra, S.P. (eds) Regulation of Ovarian and Testicular Function. Advances in Experimental Medicine and Biology, vol 219. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5395-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5395-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5397-3

  • Online ISBN: 978-1-4684-5395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics