Skip to main content

The Evolution of FMRFamide-Like Neuropeptide Genes

  • Chapter
Neurosecretion

Abstract

Biologically active peptides constitute an important class of extracellular molecular messengers. Consisting of short chains of amino acids, they mediate a range of behavioral, developmental, and physiological processes and are major components of both neuronal and endocrine communication networks (Krieger, 1983). In general, peptides are initially contained on larger precursor proteins which undergo post-translational proteolytic processing (Loh and Gainer, 1983). These precursors often serve as polyproteins to liberate multiple bioactive peptide products, a property that greatly increases their potential information capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnheim, N., 1983, in: “Evolution of Genes and Proteins,” M. Nei and R.K. Koehn, eds., Sinauer, Sunderland.

    Google Scholar 

  • Austin, T., Weiss, S., and Lukowiak, K., 1982, FMRFamide effects on spontaneous and induced contractions of the anterior gizzard in Anlvsia, Can. J. Phvsiol. Pharmacol., 61: 949.

    Article  Google Scholar 

  • Baltimore, D., 1981, Gene conversion: some implications for immunoglobulin genes, Cell, 24: 592.

    Article  Google Scholar 

  • Barnard C.S., and Dockray, G.J., 1984, Increasing arterial blood pressure in the rat in response to a new vertebrate neuropeptide, LPLRFamide, and a related molluscan peptide, FMRFamide, Reg. Peptides, 8: 209.

    Article  Google Scholar 

  • Boer, H.H., Schot, L.P.C., Veenstra, J.A., and Reichelt, D., 1980, Immunocytochemical identification of neural elements in the central nervous systems of a snail, some insects, a fish, and a mammal with antiserum to the molluscan cardio-excitatory tetrapeptide FMRFamide, Cell and Tissue Res., 213: 21.

    Article  Google Scholar 

  • Cottrell, G.A., Davies, N.W., and Green, K.A., 1984, Multiple actions of a molluscan cardioexcitatory neuropeptide and related peptides on identified Helix neurons, J. Physiol., 365: 315.

    Google Scholar 

  • Dockray, G.J., Reeve Jr., J.R., Shively, J., Gayton, R.J., and Barnard, C.S., 1983, A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide, Nature, 305: 328.

    Article  Google Scholar 

  • Ebberink R.H.M., and Joosse, J., 1985, Molecular properties of various snail peptides from brain and gut, Peptides, 6 (3): 451.

    Article  Google Scholar 

  • Gayton, R.J., 1982, Mammalian neugonal,.pctions of FMRFamide and the structurally related opiod Met-enkephalin-Arg6-Phe7, Nature, 298: 275.

    Article  Google Scholar 

  • Greenberg M.J., and Price, D.A., 1983, Invertebrate neuropeptides: native and naturalized, Ann. Rev. Phvsiol., 45: 271.

    Article  Google Scholar 

  • Grimmelikhuijzen C.J.P., and Graff, D., 1985, Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates, Peptides, 6 (3): 477.

    Article  Google Scholar 

  • Grimmelikhuijzen C.J.P., and Graff, D., 1986, Isolation of >Glu-Gly-Arg-Phe-NH2 (AnthoRFamide), a neuropeptide from sea anenomes, Proc. Natl. Acad. Sci. USA, 83: 9817.

    Article  Google Scholar 

  • Kreiger, D.T., 1983, Brain peptides: what, where, and why?, Science, 222:975..

    Article  Google Scholar 

  • Loh Y.P. and Gainer, H., 1983, Biosynthesis and processing of neuropeptides, in: “Brain Peptides”, D.T. Krieger, M.J. Brownstein, and J.B. Martin, eds., Wiley, New York.

    Google Scholar 

  • McCarthy P.W., and Cottrell, G.A., 1984, Responses of mouse spinal neurones in culture to locally applied Phe-Met-Arg-Phe-NH2, Como. Biochem. Phvsiol., 79C: 383.

    Article  Google Scholar 

  • McFarlane, I.D., Graff, D., and Grimmelikhuijzen, C.J.P., 1987, J. Exp. Biol., in press.

    Google Scholar 

  • Nacham, R.J., Holman, G.M., Haddon, W.F., and Ling, N., 1986, Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin, Science 234: 71.

    Article  Google Scholar 

  • Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A.C.Y. Cohen, S.N., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor, Nature, 278: 423.

    Google Scholar 

  • Nambu, J.R., Murphy-Erdosh, C., Andrews, P.C., Feistner, G.J., and Scheller, R.H., 1988, Isolation and characterization of a Drosophila neuropeptide gene, submitted.

    Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M. Hirose, T., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin, Nature, 295: 202.

    Article  Google Scholar 

  • Painter S.D., and Greenberg, M.J., 1982, A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5-hydroxytryptamine, Biol. Bull., 162: 311.

    Article  Google Scholar 

  • Painter, S.D., Morley, J.S., and Price, D.A., 1982, Structure-activity relations of the molluscan neuropeptide FMRFamide on some molluscan muscles, Life Sci., 31: 2471.

    Article  Google Scholar 

  • Price D.A., and Greenberg, M.J., 1977, The structure of a molluscan cardioexcitatory peptide, Science, 197: 670.

    Article  Google Scholar 

  • Price, D.A., 1986, Evolution of a molluscan cardioregulatory neuropeptide, American Zoologist, 26: 1007.

    Google Scholar 

  • Price, D.A., Cottrell, G.A., Doble, K.E., Greenberg, M.J. Jorenby, W., Lehman, H.K., and Riehm, J.P., 1985, A novel FMRF-related peptide in Helix: pQDPFLRFamide, Biol. Bull., 169: 256.

    Article  Google Scholar 

  • Schaefer, M., Picciotto, M.R., Kreiner, T., Kaldany, R.R., Taussig, R., and Scheller, R.H., 1985, Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides, Cell, 41: 457.

    Article  Google Scholar 

  • Scheller, R.H., Kaldany, R.R., Kreiner, T., Mahon, A.C., Nambu, J.R., Schaefer, M., and Taussig, R., 1984, Neuropeptides: mediators of behavior in Aplysia, Science, 225: 1300.

    Article  Google Scholar 

  • Sharp P.M., and Li, W.H., 1987, Ubiquitin genes as a paradigm of concerted evolution in tandem repeats, J. Molec. Evol., 25: 58.

    Article  Google Scholar 

  • Shyamala, M. Fisher, J.,and Scheller, R.H., 1986, A neuropeptide precursor expressed in Aplysia neuron L5, DNA, 5: 203.

    Article  Google Scholar 

  • Sorensen, R.L., Sasek, C.A., and Elde, R., 1984, Phe-Met-Arg-Phe-amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islets, Peptides, 5: 777.

    Article  Google Scholar 

  • Sossin, W.S., Kirk, M.D., and Scheller, R.H., 1987, Peptidergic modulation of neuronal circuitry controlling feeding in Aplysia, Neurosci., 7 (3): 671.

    Google Scholar 

  • Tatemoto K., and Mutt, V., 1978, Chemical determination of polypeptide hormones, Proc. Natl, Acad. Sci. USA., 75: 4115.

    Article  Google Scholar 

  • Taussig R., and Scheller, R.H., 1986, The Aolvsia FMRFamide gene encodes sequences related to mammalian brain peptides, DNA, 5: 453.

    Article  Google Scholar 

  • Weber, E., Evans, C.J., Samuelsson, S.J., and Barchas, J.D., 1981, A novel peptide neuronal system in rat brain and pituitary, Science, 214: 1248.

    Article  Google Scholar 

  • Weiss, S., Goldberg, J.I., Chohan, K.S., Stell, W.K., Drummond, G.I., and Lukowiak, K., 1984, Evidence for FMRFamide as a neurotransmitter in the gill of Aplysia californica, J. Neurosci., 4:1994.

    Google Scholar 

  • White K., and Valles, A.M., 1985, Immunohistochemical and genetic studies of serotonin and neuropeptides in Drosophila, in: “Molecular Basis of Neuronal Development,” G.M. Edelman, W. Gall, W.M. Cowan, eds., Wiley, New York.

    Google Scholar 

  • White, K., Hurteau, T., and Punsal, P., 1986, Neuropeptide FMRFamide-like immunoreactivity in Drosophila: development and distribution, J.Com. Neurol., 247 (4): 430.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Nambu, J.R., Scheller, R.H. (1988). The Evolution of FMRFamide-Like Neuropeptide Genes. In: Pickering, B.T., Wakerley, J.B., Summerlee, A.J.S. (eds) Neurosecretion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5502-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5502-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5504-5

  • Online ISBN: 978-1-4684-5502-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics