Skip to main content

Phosphorylation by Casein Kinase-2 and Reversible Alteration of Thiol Groups: Mechanisms of Control of Ornithine Decarboxylase?

  • Chapter
Progress in Polyamine Research

Abstract

The regulation of ornithine decarboxylase (ODC) in mammalian cells appears to be complex and not completely clarified.1, 2 This enzyme is characterized by a very short half-life, but the mechanism of ODC degradation is as yet unknown3. Because of the rapid turnover, changes in the rate of synthesis are promptly expressed as fluctuations of ODC activity1, 4. However, a post-translational control of ODC has been proposed by several Authors1, and include interaction with a specific inhibitor, antizyme5, and interconversion between distinct charged species6. These mechanisms could account for the occurence of inactive ODC forms or play a function in the process of ODC decay, although their precise role remains to be defined. The present paper focuses on two additional covalent modifications of ODC molecule, which could cooperate at the control of ODC activity and decay: the reversible oxidation of sulphydrylic groups and the phosphorylation by a particular class of protein kinases, called casein kinase-2 (CK-2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W. Tabor and H. Tabor, Polyamines, Ann. Rev. Biochem. 53: 749 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. A.E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J. 234: 249 (1986).

    PubMed  CAS  Google Scholar 

  3. J.R. Glass and E.W. Gerner, Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitinindependent mechanism, J.Cell.Physiol. 130: 133 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. D.H. Russell, Ornithine decarboxylase, a key regulatory enzyme in normal and neoplastic growth, Drug Metab.Rev 16: 1 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. E.S. Canellakis, D.A. Kyriakidis, C.A. Rinehart Jr., S.C. Huang, C. Panagiotidis and W.F. Fong, Regulation of polyamine biosynthesis by antizyme and some recent development relating the induction of polyamine biosynthesis to cell growth, Bioscience Reports, 5: 189 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. J.L.A. Mitchell, P. Qasba, R.E. Stofko and M.A. Fransen, Ornithine decarboxylase modification and polyamine-stimulated enzyme inactivation in HTC cells, Biochem.J., 228: 297 (1985).

    PubMed  CAS  Google Scholar 

  7. F. Flamigni, C. Guarnieri, C. Stefanelli, F. Meggio, L.A. Pinna and C.M. Caldarera, Ornithine decarboxylase in the early phase of cardiac hypertrophy induced by isoproterenol, in: “Recent Progress in Polyamine Research”, L. Selmeci, M.E. Brosnan, N. Seiler, eds., Akademiai Kiado’, Budapest (1985).

    Google Scholar 

  8. F. Meggio, F. Flamigni, C.M. Caldarera, C. Guarnieri and L.A. Pinna, Phosphorylation of rat heart ornithine decarboxylase by type-2 casein kinase, Biochem.Biophys.Res. Commun, 122: 997 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal.Biochem., 72: 248 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. G.M. Hathaway and J.A. Traugh, Casein Kinase II, Meth.Enzymol, 99: 317 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. C. Cochet, G. Job, F. Pirollet and E.M. Chambaz, Cyclic nucleotide independent casein kinase (G type) in bovine adrenal cortex, Biochim. Biophys. Acta, 658: 191 (1981)

    PubMed  CAS  Google Scholar 

  12. H.R. Schneider, G.H. Reichert and O.G. Issinger, Enhanced casein kinase II activity during mouse embryogenesis, Eur.J.Biochem., 161: 733 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. K. Prowald, H. Fisher and O.G. Issinger, Enhanced casein kinase II activity in human tumour cell cultures, FEBS Lett., 176: 479 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. A.M. Brunati, D. Soggioro, L. Chieco-Bianchi and L.A. Pinna, Altered protein kinase activities of lymphoid cells transformed by Abelson and Moloney Leukemia viruses, FEBS Lett., 206: 59 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. J. Sommercorn, J.A. Mulligan, F.J. Lozeman and E.G. Krebs, Activation of casein kinase II in responce to insulin and to epidermal growth factor, Proc. Natl. Acad. Sci USA, 84: 8834 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. P. Ackerman, V.C. Glover and N. Osheroff, Phosphorylation of DNA topoisomerase II by casein kinase II: modulation of eukaryotic topoisomerase II activity in vitro, Proc.Natl. Acad. Sci USA, 82: 3164 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. U.R. Tipnis and M.K. Haddox, Casein kinase II mediated phosphorylation of ornithine decarboxylase, J.Cell.Biol., 101: 356a (1985).

    Google Scholar 

  18. N.J. Donato, C.F. Ware and C.V. Byus, A rat monoclonal antibody which interacts with mammalian ornithine decarboxylase at an epitope involved in phosphorylation, Biochim.Biophys.Acta, 884: 370 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. C. Kahana and D. Nathans, Nucleotide sequence of murine ornithine decarboxylase in RNA, Proc.Natl.Acad.Sci. USA, 82: 1673 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. F. Meggio, A.M. Brunati and L.A. Pinna, Autophosphorylation of type 2 casein kinase TS at both its α-and β-subunits. Influence of different effectors, FEBS Lett., 160: 203 (1983)

    Article  PubMed  CAS  Google Scholar 

  21. L.A. Pinna, P. Agostinis and S. Ferrari, Selectivity of protein kinases and protein phosphatases: a comparative analysis, Adv. Prot. Phosphatases, III: 327 (1986).

    Google Scholar 

  22. H.J. Van Kranen, L. Van de Zande, C.F. Van Kreijl, A. Bishop and B. Wieringa, Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA, Gene, 60: 145 (1987).

    Article  PubMed  Google Scholar 

  23. F. Meggio, F. Flamigni, C. Guarnieri and L.A. Pinna, Location of the phosphorylation site for casein kinase-2 within the aminoacid sequence of ornithine decarboxylase, Biochim. Biophys.Acta, 929: 114 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. M. Gupta and P. Coffino, Mouse ornithine decarboxylase.Complete aminoacid sequence deduced from cDNA, J. Bio1. Chem., 260: 2941 (1985).

    CAS  Google Scholar 

  25. N.J. Hickock, P.J. Seppanen, G.L. Gunsalus and O.A. Janne, Complete aminoacid sequence of human ornithine decarboxylase deduced from complementary DNA, DNA, 6: 179 (1987).

    Article  Google Scholar 

  26. P.R. Srinivasan, P.N. Tonin, E.J. Wensing and W.H. Lewis, The gene for ornithine decarboxylase is co-amplified in hydroxyurea-resistant hamster ceIls, J.Cell.Bio1., 262: 1287 (1987).

    Google Scholar 

  27. M.A. Phillips, P. Coffino and C.C. Wang, Cloning and sequencing of the ornithine decarboxylase gene from Trypanosomabrucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. J. Biol. Chem., 262: 8721 (1987).

    PubMed  CAS  Google Scholar 

  28. S. Rogers, R. Weils and M. Rechsteiner, Aminoacid sequences common to rapidly degraded proteins: the PEST hypothesis, Science, 234: 364 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. C. Cochet, J.J. Feige, F. Pinollet, M. Keramidis and E.M. Chambaz, Selective inhibition of a cyclic nucleotide independent protein kinase (G type casein kinase) by quercetin and related polyphenols, Biochem.Pharmacol., 31: 1357 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Graziani and R. Chayoth, Regulation of cyclic AMP level and synthesis of DNA, RNA and protein by quercetin in Enrich ascites tumor cells, Biochem.Pharmacol, 28: 397 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. J. Janne and H.G. Williams-Ashman, On the purification of L-Or-nithine decarboxylase from rat prostate and effects of thiol compounds on the enzyme, J. Biol.Chem, 246: 1725 (1971)

    PubMed  CAS  Google Scholar 

  32. M.F. Zuretti and E. Gravela, Studies on the mechanisms of ornithine decarboxylase in vitro inactivation, Biochim. Biophys.Acta, 742: 269 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. C. Danzin and L. Persson, L-ornithine-induced inactivation of mammalian ornithine decarboxylase in vitro, Eur. J. Biochem., 166: 45 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. C. Guarnieri, A. Lugaresi, F. Flamigni, C. Muscari and C.M. Caldarera, Effect of oxygen radicals and hyperoxia on rat heart ornithine decarboxylase activity, Biochim.Biophys. Acta, 718: 157 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Murakami, T. Kameji, S. Hayashi, Cysteine-dependent inactivation of hepatic ornithine decarboxylase, Biochem.J., 217: 573 (1984).

    PubMed  CAS  Google Scholar 

  36. J.L.A. Mitchell, Post-translational controls of ornithine decarboxylase activity, Adv.Polyamine Res., 3: 15 (1981).

    CAS  Google Scholar 

  37. F. Flamigni, C. Guarnieri and C.M. Caldarera, Rat liver cytosol contains NADPH-and GSH-dependent factors able to restore ornithine decarboxylase inactivated by removal of thiol reducing agents, Biochem.J., 250: 53 (1988).

    PubMed  CAS  Google Scholar 

  38. F. Flamigni, S. Marmiroli, C.M. Caldarera and C. Guarnieri, Involvement of thiol transferase and thioredoxin-dependent systems in the protection of “essential” thiol groups of ornithine decarboxylase, (submitted for publication).

    Google Scholar 

  39. K. Axelsson, S. Eriksson and B. Mannervik, Purification and characterization of cytoplasmic thiol transferase (Glutathione: disulfide oxidoreductase) from rat liver, Biochemistry, 17: 2978 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. A. Holmgren, Thioredoxin, Ann.Rev.Biochem., 54: 237 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. D.M. Ziegler, Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Ann. Rev. Biochem., 54: 305 (1985).

    Article  PubMed  CAS  Google Scholar 

  42. C.E. Olson, A.H. Soll and N. Kaplowitz, Modulating effect of thiol-disulfide status on 14C aminopyrine accumulation in the isolated parietal cell, J.Biol.Chem., 260: 8020 (1985).

    PubMed  CAS  Google Scholar 

  43. K. Sato, H. Mimura, K. Wakai, N. Tomari, T. Tsushiwa and K. Shizume, Modulating effect of glutathione disulfide on thyroxine-5′-deiodination by rat hepatocytes in primary culture: effect of glucose, Endocrinology, 113: 878 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. W.T. Beck, Increase by vinblastine of oxidized glutathione in cultured mammalian cells, Biochem.Pharmacol., 29: 2333 (1980).

    Article  PubMed  CAS  Google Scholar 

  45. K.U. Shallreuter and J.M. Wood, Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett., 36: 297 (1987).

    Article  Google Scholar 

  46. F.C. Knowles and A.A. Benson, The biochemistry of arsenic, Trends Biochem.Sci., 9: 178 (1983).

    Article  Google Scholar 

  47. E. Karvonen, L.C. Andersson and H. Poso, A human neuroblastoma cell line with a stable ornithine decarboxylase in vivo and in vitro, Biochem. Biophys. Res. Commun., 126: 96 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. M.F. Zuretti, O. Brossa, P. Gili and E. Gravela, Ornithine decarboxylase properties: is there a role for a microsome-bound inactivating activity, Cell. Biochem. Funct., 6: 107 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Flamigni, F., Meggio, F., Marmiroli, S., Guarnieri, C., Pinna, L.A., Caldarera, C.M. (1988). Phosphorylation by Casein Kinase-2 and Reversible Alteration of Thiol Groups: Mechanisms of Control of Ornithine Decarboxylase?. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics