Skip to main content

The Generation of Three-Dimensional Structures from NMR-Derived Constraints

  • Chapter
Protein Structure and Engineering

Part of the book series: NATO ASI Series ((NSSA,volume 183))

Abstract

NMR is capable of providing many types of information about ligands, macromolecules, and their complexes. In recent years, the generation of solution structures based on NMR observations has become widespread. While these methods hold the promise of providing nearly as precise information for molecules in solution as X-ray methods do for crystals, they differ from X-ray in that the experimental observations do not reveal the ensemble of positions of all the heavy atoms, but rather the distances between certain pairs of atoms. Consequently, one needs to find tools that enable transformation from a set of pairwise distances [distance space] to Cartesian coordinate space in order to build usable structural models. These tools rely on an existing body of knowledge that describes reasonable geometries for covalently bonded atoms in amino acids and nucleotides. Most methods currently in use have their roots in molecular modeling, where computational methods have been developed to study the conformation of molecules and the relationship of conformation to biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry, C.D., North, A.C.T., Glasel, J.A., Williams, R.J.P. and Xavier, A.V., 1971, Nature 232:236.

    Article  ADS  Google Scholar 

  • Bassolino, D.A., Hirata, F., Kitchen, D.B., Kominos, D., Pardi, A. and Levy, R.M., 1988, Determination of protein structures in solution using NMR data and impact, Int. J. Supercomputer Applications 2:41.

    Article  Google Scholar 

  • Beusen, D.D., Iijima, H. and Marshall, G.R., Structures from NMR distance constraints, Biochem. Pharm., in press.

    Google Scholar 

  • Billeter, M., Havel, T.F. and Wiithrich, K., 1987, The ellipsoid algorithm as a method for the determination of polypeptide conformations from experimental distance constraints and energy minimization, J. Comp. Chem. 8:132.

    Article  Google Scholar 

  • Boelens, R., Koning, T.M.G., van der Marel, G.A., van Boom, J.H. and Kaptein, R., 1989, Iterative procedure for structure determination from proton-proton NOEs using a full relaxation matrix approach. Application to a DNA octamer, J. Magn. Resort. 82:290.

    Google Scholar 

  • Borgias, B.A. and James, T.L., 1988, COMATOSE, a method for constrained refinement of macromolecular structure based on two-dimensional nuclear Overhauser effect spectra, J. Magn. Resort. 79:493.

    Google Scholar 

  • Braun, W., 1987, Distance geometry and related methods for protein structure determination from NMR data, Quarterly Reviews of Biophysics 19:115.

    Article  Google Scholar 

  • Braun, W. and Go, N., 1985, Calculation of protein conformations by proton-proton distance constraints, J. Mol. Biol. 186:611.

    Article  Google Scholar 

  • Braun, W., Bosch, C., Brown, L.R., Go, N. and Wiithrich, K., 1981, Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations, Biochim. Biophys. Acta 667:377.

    Article  Google Scholar 

  • Braun, W., Wagner, G., Wörgötter, E., Vasak, M., Kagi, J. and Wiithrich, K., 1985, J. Mol Biol. 186:611.

    Article  Google Scholar 

  • Brinkley, J.F., Altman, R.B., Duncan, B.S., Buchanan, B.G. and Jardetzky, O., 1988, Heuristic refinement method for the derivation of protein solution structures: Validation on cytochrome b562, J. Chem. Inf. Comput. Sci. 28:194.

    Article  Google Scholar 

  • Clore, G.M. and Gronenborn, A.M., 1987, Determination of three-dimensional structures of proteins in solution by nuclear magnetic resonance spectroscopy, Prot. Eng. 1:275.

    Article  Google Scholar 

  • Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M., 1986, Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination, J. Mol. Biol. 191:523.

    Article  Google Scholar 

  • Clore, G.M., Nilges, M., Brünger, A.T., Karplus, M. and Gronenborn, A.M., 1987a, A comparison of the restrained molecular dynamics and distance geometry methods for determining three-dimensional structures of proteins on the basis of interproton distances, FEBS Lett. 213:269.

    Article  Google Scholar 

  • Clore, G.M., Sukumaran, D.K., Nilges, M., Zarbock, J. and Gronenborn, A.M., 1987b, The conformations of hirudin in solution: A study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics, EMBO J. 6:529.

    Google Scholar 

  • Cung, M.T. and Marraud, M., 1982, Conformational dependence of the vicinal proton coupling constant for the Ca-Cß bond in peptides, Biopolymers 21:953.

    Article  Google Scholar 

  • DeMarco, A., Llinas, M. and Wiithrich, K., 1978, Analysis of the H — NMR spectra of ferrichrome peptides. I. The non-amide protons, Biopolymers 17:617.

    Article  Google Scholar 

  • Furey, W.F., Robbins, A.H., Clancy, L.L., Winge, D.R., Wand, B.C. and Stout, C.D., 1986, Science 231:704.

    Article  ADS  Google Scholar 

  • Gullion, T. and Schaefer, J., 1989, Rotational-echo double-resonance NMR, J. Magn. Reson. 81:196.

    Google Scholar 

  • Havel, T. and Wiithrich, K., 1984, A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular H-H proximities in solution, Bull. Math. Biol. 46:673.

    MATH  Google Scholar 

  • Havel, T. and Wiithrich, K., 1985, An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformation in solution, J. Mol. Biol. 182:281.

    Article  Google Scholar 

  • Havel, T.F., Kuntz, I.D. and Crippen, G.M., 1983, The theory and practice of distance geometry, Bull. Math. Biol. 45:665.

    MathSciNet  MATH  Google Scholar 

  • Hendrickson, W.A., 1989, NMR structural analysis from the perspective of a protein crystallographer, J. Cell. Biochem. 13A:12.

    Google Scholar 

  • Holak, T.A., Prestegard, J.H. and Forman, J.D., 1987, NMR-Pseudoenergy approach to the solution structure of acyl carrier protein, Biochemistry 26:4652.

    Article  Google Scholar 

  • Iijima, H., Dunbar, J.B., Jr. and Marshall, G.R., 1987, The calibration of effective van der Waals atomic contact radii for proteins and peptides, Proteins: Struct. Funct. Genet. 2:330.

    Article  Google Scholar 

  • Jardetzky, O., 1980, On the nature of molecular conformations inferred from high-resolution NMR, Biochim.Biophys.Acta 621:227.

    Article  Google Scholar 

  • Karplus, M., 1959, Contact electron-spin coupling of nuclear magnetic moments, J. Chem. Phys. 30:11.

    Article  ADS  Google Scholar 

  • Karplus, M., 1963, Vicinal proton coupling in nuclear magnetic resonance, J. Am. Chem. Soc. 85:2870.

    Article  Google Scholar 

  • Keepers, J.W. and James, T.L., 1984, A theoretical study of distance determinations from NMR two-dimensional nuclear Overhauser effect spectra, J. Magn. Reson. 57:404.

    Google Scholar 

  • Kessler, H., Loosli, H.R., Oschkinat, H. and Widmer, A., 1985, Assignment of the 1H-, 13C-and 15N-NMR spectra of cyclosporin A in CDCl3 and C6D6 by a combination of homo- and heteronuclear two-dimensional techniques, Helv. Chim. Acta 68:661.

    Article  Google Scholar 

  • Kessler, H., Griesinger, C. and Wagner, K., 1987, Peptide conformations. 42. Conformation of side chains in peptides using heteronuclear coupling constants obtained by two-dimensional NMR spectroscopy, J. Am. Chem. Soc. 109:6927.

    Article  Google Scholar 

  • Kopple, K.D., Wiley, G.R. and Tauke, R., 1973, A dihedral angle-vicinal proton coupling constant correlation for the a-ß bond of amino acid residues, Biopolymers 12:627.

    Article  Google Scholar 

  • Lautz, J., Kessler, H., Kaptein, R. and van Gunsteren, W.F., 1987, Molecular dynamics simulation of cyclosporin A: The crystal structure and dynamic modelling of a structure in apolar solution based on NMR data, J. Comput.-Aided Mol. Design 1:219.

    Article  ADS  Google Scholar 

  • Loosli, H.R., Kessler, H., Oschkinat, H., Weber, H.-P., Petcher, T.J. and Widmer, A., 1985, The conformation of cyclosporin A in the crystal and in solution, Helv. Chim. Acta 68:682.

    Article  Google Scholar 

  • Marshall, G.R., Beusen, D.D., Kociolek, K., Redlinski, A.S., Leplawy, M.T., Pan, Y. and Schaefer, J., Determination of a precise interatomic distance in a helical peptide by REDOR NMR, J. Am. Chem. Soc., in press.

    Google Scholar 

  • McCammon, J.A. and Harvey, S.C., 1987, “Dynamics of Proteins and Nucleic Acids,” Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Mildvan, A.S., 1989, NMR studies of the interaction of substrates with enzymes and their peptide fragments, FASEB J. 3:1705.

    Google Scholar 

  • Mildvan, A.S. and Gupta, R.K., 1978, Nuclear relaxation measurements of the geometry of enzyme-bound substrates and analogues, Methods Enzymol. 49G:322.

    Article  Google Scholar 

  • Montelione, G.T., Winkler, M.E., Rauenbuehler, P. and Wagner, G., 1989, Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins, J. Magn. Reson. 82:198.

    Google Scholar 

  • Nikiforovich, G.V., Vesterman, B.G. and Betins, J., 1988, Combined use of spectroscopic and energy calculation methods for the determination of peptide conformation in solution, Biophys. Chem. 31:101.

    Article  Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M., 1988, Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations, FEBS Lett. 229:317.

    Article  Google Scholar 

  • Noggle, J.H. and Schirmer, R.E., 1971, “The Nuclear Overhauser Effect,” Academic Press, New York.

    Google Scholar 

  • Pardi, A., Billeter, M. and Wüthrich, K., 1984, Calibration of the angular dependence of the amide proton-Ca proton coupling constants in a globular protein, J. Mol. Biol. 180:741.

    Article  Google Scholar 

  • Pardi, A., Hare, D.R. and Wang, G., 1988, Determination of DNA structures by NMR and distance geometry techniques: A computer simulation, Proc. Natl. Acad. Sci. USA 85:8785.

    Article  ADS  Google Scholar 

  • Patel, D.J., Shapiro, L. and Hare, D., 1987, Nuclear magnetic resonance and distance geometry studies of DNA structures in solution, Ann. Rev. Biophys. Biophys. Chem. 16:423.

    Article  Google Scholar 

  • Petcher, T.J., Weber, H.-P. and Ruegger, A., 1976, Crystal and molecular structure of an iodo-derivative of the cyclic undecapeptide cyclosporin A, Helv. Chim. Acta 59:1480.

    Article  Google Scholar 

  • Summer, M.F., Hare, D., South, T.L. and Kim, B., 1989, Structure of a retroviral zinc finger: 2D NMR spectroscopy and distance geometry calculations on a synthetic finger from HIV-1 nucleic acid binding protein, p7, J. Cell. Biochem. 13A:17.

    Google Scholar 

  • Vasquez, M. and Scheraga, H.A., 1988, Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data, J. Biomol. Struct. Dynamics 5:705.

    Article  Google Scholar 

  • Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Go, N. and Wüthrich, K., 1987, Protein structures in solution by nuclear magnetic resonance and distance geometry — The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN, J. Mol. Biol. 196:611.

    Article  Google Scholar 

  • Wüthrich, K., 1986, “NMR of Proteins and Nucleic Acids,” John Wiley and Sons, New York.

    Google Scholar 

  • Wüthrich, K., 1989a, Protein structure determination in solution by nuclear magnetic resonance spectroscopy, Science 243:45.

    Article  ADS  Google Scholar 

  • Wüthrich, K., 1989b, The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination, Ace. Chem. Res. 22:36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Beusen, D.D., Marshall, G.R. (1989). The Generation of Three-Dimensional Structures from NMR-Derived Constraints. In: Jardetzky, O., Holbrook, R. (eds) Protein Structure and Engineering. NATO ASI Series, vol 183. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5745-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5745-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5747-6

  • Online ISBN: 978-1-4684-5745-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics