Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

  • 151 Accesses

Abstract

The issues involved with the biochemistry of inorganic chloride (Cl) differ considerably from those considered for the biochemistry of inorganic fluoride (F). Whereas F is present in trace amounts in the body, Cl is a normal and substantial constituent of biological fluids. Whereas extracellular fluid—the composition of which resembles that of pre-Cambrian era seawater—has a high concentration of Na+ and Cl and a low concentration of K+, intracellular fluid has a large quantity of K+ and phosphate, primarily organically bound, but little Cl. The maintenance of proper compositions of these fluids, vital to the well-being of the cell, depends on the proper availability and identity of nutrients in the extracellular fluid, cellular metabolism, and transport properties of cellular membranes. Because of the position of chloride as the most abundant anion in the extracellular medium, membrane transport of chloride has assumed an important role in many processes, including absorption, secretion, and control of osmotic pressure, cell volume, fluid pH, and electrolyte balance. Cl is also a common counterion in proteins, especially basic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrich, J. M., McCarthy, C. A., and Hurst, J. K., 1981. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. USA 78: 210–214.

    PubMed  CAS  Google Scholar 

  • Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: Role of extracellular chloride, J. Pharmacol. Exp. Ther. 245: 299–304.

    PubMed  CAS  Google Scholar 

  • Brautigan, D. L., 1988. Molecular defects in ion channel regulation in cystic fibrosis predicted from analysis of protein phosphorylation/dephosphorylation, Int. J. Biochem. 20: 745–752.

    PubMed  CAS  Google Scholar 

  • Bruun-Meyer, S., 1987. The GABA/benzodiazepine receptor—chloride ionophore complex: Nature and modulation, Prog. Neuro-Psychopharmacol. BioL Psychiat. 11: 365–387.

    CAS  Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A., 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation, J. Membr. Biol. 15: 207–226.

    PubMed  CAS  Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochim. Biophys. Acta 515: 239–302.

    PubMed  CAS  Google Scholar 

  • Chen, P.-Y., and Verkman, A. S., 1988. Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubule, Biochemistry 27: 655–660.

    PubMed  CAS  Google Scholar 

  • Chen, P.-Y., Illsley, N. P., and Verkman, A. S., 1988. Renal brush-border chloride transport mechanisms characterized using a fluorescent indicator, Am. J. Physiol. 254: F114 - F120.

    PubMed  CAS  Google Scholar 

  • Costa, E., and Guidotti, A., 1979. Molecular mechanisms in the receptor action of benzodiazepines, Annu. Rev. Pharmacol. Toxicol. 19: 531–545.

    PubMed  CAS  Google Scholar 

  • Costa, T., Rodbard, D., and Pert, C. B., 1979. Is the benzodiazepine receptor coupled to a chloride ion channel? Nature 277: 315–317.

    PubMed  CAS  Google Scholar 

  • Cotton, C. U., Stutts, M. J., Knowles, M. R., Gatzy, J. T., and Boucher, R. C., 1987. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium: An in vitro electrophysiological analysis, J. Clin. Invest. 79: 80–85.

    PubMed  CAS  Google Scholar 

  • Dalmark, M., 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells, J. Gen. Physiol. 67: 223–234.

    PubMed  CAS  Google Scholar 

  • de Rouffignac, C., and Elalouf, J.-M., 1988. Hormonal regulation of chloride transport in the proximal and distal nephron, Annu. Rev. Physiol. 50: 123–140.

    PubMed  Google Scholar 

  • Dismukes, G. C., 1986. The metal centers of the photosynthetic oxygen-evolving complex, Photochem. Photobiol. 43: 99–115.

    CAS  Google Scholar 

  • Dix, J. A., Verkman, A. S., and Solomon, A. K., 1986. Binding of chloride and a disulfonic stilbene transport inhibitor to red cell band 3, J. Membr. Biol. 89: 211–223.

    PubMed  CAS  Google Scholar 

  • Ehlers, M. R. W., and Kirsch, R. E., 1988. Catalysis of angiotensin I hydrolysis by human angiotensin-converting enzyme: Effect of chloride and pH, Biochemistry 27: 5538–5544.

    PubMed  CAS  Google Scholar 

  • Ehlers, M. R. W., and Riordan, J. F., 1989. Angiotensin-converting enzyme: New concepts concerning its biological role, Biochemistry 28: 5311–5318.

    PubMed  CAS  Google Scholar 

  • Epstein, F. H., and Silva, P., 1985. Na-K-Cl cotransport in chloride-transporting epithelia, Ann. N.Y. Acad. Sci. 456: 187–197.

    PubMed  CAS  Google Scholar 

  • Foskett, J. K., and Melvin, J. E., 1989. Activation of salivary secretion: Coupling of cell volume and [Ca’]; in single cells, Science 244: 1582–1585.

    PubMed  CAS  Google Scholar 

  • Frizzell, R. A., 1988. Role of absorptive and secretory processes in hydration of the airway surface, Am. Rev. Respir. Dis. 138: S3 - S6.

    PubMed  CAS  Google Scholar 

  • Frizzell, R. A., Rechkemmer, G., and Shoemaker, R. L., 1986. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Science 233: 558–560.

    PubMed  CAS  Google Scholar 

  • Frölich, 0., 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride, J. Membr. Biol. 65: 111–123.

    Google Scholar 

  • Furuya, W., Tarshis, T., Law, F.-Y., and Knauf, P. A., 1984. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein, J. Gen. Physiol. 83: 657–681.

    PubMed  CAS  Google Scholar 

  • Gaffney, P. J., Urano, T., de Serrano, V. S., Mahmoud-Alexandroni, M., Metzger, A. R., and Castellino, F. J., 1988. Roles for chloride ion and fibrinogen in the activation of [Glu’]plasminogen in human plasma, Proc. Natl. Acad. Sci. USA 85: 3595–3598.

    PubMed  CAS  Google Scholar 

  • Geck, P., and Pfeiffer, B., 1985. Na + + K + + 2C1- cotransport in animal cells-its role in volume regulation, Ann. N.Y. Acad. Sci. 456: 166–182.

    PubMed  CAS  Google Scholar 

  • Gerencser, G. A., White, J. F., Gradmann, D., and Bonting, S. L., 1988. Is there a Cl - pump? Am. J. Physiol. 255: R677 - R692.

    PubMed  CAS  Google Scholar 

  • Grassi, S. M., 1989. CI/HCO3 exchange in human placental brush border membrane vesicles, J. Biol. Chem. 264: 11103–11106.

    Google Scholar 

  • Greger, R., 1985. Ion transport mechanisms in the thick ascending limb of Henle’s loop of the mammalian nephron, Physiol. Rev. 65: 760–797.

    PubMed  CAS  Google Scholar 

  • Greger, R., 1988. Chloride transport in thick ascending limb, distal convolution, and collecting duct, Annu. Rev. Physiol. 50: 111–122.

    PubMed  CAS  Google Scholar 

  • Griepp, E. B., and Robbins, E. S., 1988. Epithelium, in Cell and Tissue Biology. A Textbook of Histology, 6th ed. (L. Weiss, ed.), Urban and Schwartzenberg, Baltimore, pp. 115–153.

    Google Scholar 

  • Guidotti, A., Corda, M. G., Wise, B. C., Vaccarino, F., and Costa, E., 1983. GABAergic synapses: Supramolecular organization and biochemical regulation, Neuropharmacology 22: 1471–1479.

    PubMed  CAS  Google Scholar 

  • Gunn, R. B., and Frölich, O., 1979. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported ion at a time, J. Gen. Physiol. 74: 351–374.

    PubMed  CAS  Google Scholar 

  • Gunn, R. B., and Frölich, O., 1982. Arguments in support of a single transport site on each anion transporter in human red cells, in Chloride Transport in Biological Membranes ( J. A. Zadunaisky, ed.), Academic Press, New York, pp. 33–59.

    Google Scholar 

  • Guyton, A. C., 1986. Textbook of Medical Physiology, 7th ed., W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Hardie, R. C., 1989. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse, Nature 339: 704–706.

    PubMed  CAS  Google Scholar 

  • Havoundjian, H., Paul, S. M., and Skolnick, P., 1986. The permeability of y-aminobutyric acid-gated chloride channels is described by the binding of a “cage” convulsant, tutylbicyclophosphoro[35S]thionate, Proc. Natl. Acad. Sci. USA 83: 9241–9244.

    PubMed  CAS  Google Scholar 

  • Hebert, S. C., and Andreoli, T. E., 1984. Control of NaC1 transport in the thick ascending limb, Am. J. Physiol. 246: F745 - F756.

    PubMed  CAS  Google Scholar 

  • Higashijima, T., Ferguson, K. M., and Sternweis, P. C., 1987. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride, J. Biol. Chem. 262: 3597–3602.

    PubMed  CAS  Google Scholar 

  • Hoffmann, E. K., 1986. Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta 864: 1–31.

    PubMed  CAS  Google Scholar 

  • Homann, P. H., 1985. The association of functional anions with the oxygen-evolving center in chloroplasts, Biochim. Biophys. Acta 809: 311–319.

    CAS  Google Scholar 

  • Homann, P. H., 1987. The relations between chloride, calcium, and polypeptide requirements of photosynthetic water oxidation, J. Bioenerg. Biomembr. 19: 105–123.

    PubMed  CAS  Google Scholar 

  • Hwang, T.-C., Luo, L., Zeitlin, P. L., Greunert, D. C., Huganir, R., and Guggino, W. B., 1989. CI–channels in CF: Lack of activation by protein kinase C and cAMP-dependent protein kinase, Science 244: 1351–1353.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L., 1982. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes, J. Gen. Physiol. 79: 169–185.

    PubMed  CAS  Google Scholar 

  • Jennings, M. L., 1985. Kinetics and mechanism of anion transport in red blood cells, Annu. Rev. Physiol. 47: 519–533.

    PubMed  CAS  Google Scholar 

  • Jetten, A. M., Yankaskas, J. R., Stutts, M. J., Willumsen, N. J., and Boucher, R. C., 1989. Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia, Science 244: 1472–1475.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Pfister, V. R., and Homann, P. J., 1983. Metastable proton pools in thylakoids and their importance for the stability of photosystem-II, Biochim. Biophys. Acta 723: 256–265.

    CAS  Google Scholar 

  • Karniski, L. P., and Aronson, P. S., 1985. Chloride/formate exchange with formic acid recycling: A mechanism of active chloride transport across epithelial membranes, Proc. Natl. Acad. Sci. USA 82: 6362–6365.

    PubMed  CAS  Google Scholar 

  • Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L.-C., 1989. Identification of the cystic fibrosis gene: Genetic analysis, Science 245: 1073–1080.

    PubMed  CAS  Google Scholar 

  • Kinne, R., Hannafin, J. A., and König, B., 1985. Role of the NaCI-KCI cotransport system in active chloride absorption and secretion, Ann. N.Y. Acad. Sci. 456: 198–206.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Transp. 12: 249–363.

    CAS  Google Scholar 

  • Knauf, P. A., and Mann, N. A., 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system, J. Gen. Physiol. 83: 703–725.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., and Mann, N. A., 1986. Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system, Am. J. Physiol. 251: C1 - C9.

    PubMed  CAS  Google Scholar 

  • Knauf, P. A., Ship, S., Breuer, W., McCulloch, L., and Rothstein, A., 1978. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminosulfonate (NAP-taurine) at the inside and outside of the membrane, J. Gen. Physiol. 72: 607–630.

    PubMed  CAS  Google Scholar 

  • Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N., Gatzy, T. J., and Boucher, R. C., 1983. Abnormal ion permeation through cystic fibrosis respiratory epithelium, Science 221: 1067–1070.

    PubMed  CAS  Google Scholar 

  • Kopita, R. R., and Lodish, H. F., 1985. Primary structure and transmembrane orientation of the murine anion exchange protein, Nature 316: 234–238.

    Google Scholar 

  • Kregenow, F. M., 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media, Annu. Rev. Physiol. 43: 493–505.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1974. Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.

    CAS  Google Scholar 

  • Landry, D. W., Akabas, M. H., Redhead, C., Edelman, A., Cragoe, E. J., Jr., and Al-Awqati, Q., 1989. Purification and reconstitution of chloride channels from kidney and trachea, Science 244: 1469–1472.

    PubMed  CAS  Google Scholar 

  • Levitan, I. B., 1989. The basic defect in cystic fibrosis, Science 244: 1423.

    PubMed  CAS  Google Scholar 

  • Levitzki, A., and Steer, M. L., 1974. The allosteric activation of mammalian a-amylase by chloride, Eur. J. Biochem. 41: 171–180.

    PubMed  CAS  Google Scholar 

  • Li, M., McCann, J. D., Anderson, M. P., Clancy, J. P., Liedtke, C. M., Nairn, A. C., Greengard, P., and Welsh, M. J., 1989. Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Science 244: 1353–1356.

    PubMed  CAS  Google Scholar 

  • Lifshitz, R., and Levitzki, A., 1976. Identity and properties of the chloride effector binding site in hog pancreatic a-amylase, Biochemistry 15: 1987–1993.

    PubMed  CAS  Google Scholar 

  • Lowe, A. G., and Lambert, A., 1983. Chloride-bicarbonate exchange and related transport processes, Biochim. Biophys. Acta 694: 353–374.

    Google Scholar 

  • Macara, I. G., and Cantley, L. C., 1981. Mechanism of anion exchange across the red cell membrane by band 3: Interactions between stilbenedisulfonate and NAP-taurine binding sites, Biochemistry 20: 5695–5701.

    PubMed  CAS  Google Scholar 

  • Marvizón, J. C. G., and Skolnick, P., 1988. Enhancement of t-[35S]butylbicyclophosphorothionate and [3H]strychnine binding by monovalent anions reveals similarities between y-aminobutyric acid-and glycine-gated chloride channels, J. Neurochem. 50: 1632–1639.

    PubMed  Google Scholar 

  • McPherson, M. A., Shori, D. K., and Dormer, R. L., 1988. Defective regulation of apical membrane chloride transport and exocytosis in cystic fibrosis, Biosci. Rep. 8: 27–33.

    PubMed  CAS  Google Scholar 

  • Mohler, H., and Okada, T., 1977. Benzodiazepine receptor: Demonstration in the central nervous system, Science 198: 849–851.

    PubMed  CAS  Google Scholar 

  • Muallem, S., Blissard, D., Cragoe, E. J., and Sachs, G., 1988. Activation of the Na+/H+ and Cl-/HCO3 exchange by stimulation of acid secretion in the parietal cell, J. Biol. Chem. 263: 14703–14711.

    PubMed  CAS  Google Scholar 

  • Nielsen, M., Honore, T., and Braestrup, C., 1985. Radiation inactivation of brain (36S)tbutylbicyclophosphorothionate binding sites reveals complicated molecular arrangements of the GABA/benzodiazepine receptor chloride channel complex, Biochem. Pharmacol. 34: 3633–3642.

    PubMed  CAS  Google Scholar 

  • O’Grady, S. M., Palfrey, H. S., and Field, M., 1987. Characteristic and functions of the Na-K-Cl cotransport in epithelial cells, Am. J. Physiol. 253: C177 - C192.

    PubMed  Google Scholar 

  • Olsen, R. W., 1981. GABA-benzodiazepine-barbiturate receptor interactions, J. Neurochem. 37: 1–13.

    PubMed  CAS  Google Scholar 

  • Olsen, R. W., Bureau, M., Ransom, R. W., Deng, L., Dilber, A., Smith, G., Krestchatisky, M., and Tobin, A. J., 1988. The GABA receptor-chloride ion channel protein complex, Adv. Exp. Med. Biol. 236: 1–14.

    PubMed  CAS  Google Scholar 

  • Ono, T.-A., Nakayama, H., Gleiter, H., Inoue, Y., and Kawamori, A., 1987. Modification of the properties of S2 state in photosynthetic O2-evolving center by replacement of chloride with other anions, Arch. Biochem. Biophys. 256: 618–624.

    PubMed  CAS  Google Scholar 

  • Passow, H., 1986. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane, Rev. Physiol. Biochem. Pharmacol. 103: 61–203.

    PubMed  CAS  Google Scholar 

  • Passow, H., Fasold, H., Gartner, E. M., Legrum, B., Ruffing, W., and Zaki, L, 1980. Anion transport across the red blood cell membrane and the conformation of the protein in band 3, Ann. N.Y. Acad. Sci. 341: 361–383.

    PubMed  CAS  Google Scholar 

  • Peppin, G. J., and Weiss, S. J., 1986. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils, Proc. Natl. Acad. Sci. USA 83: 4322–4326.

    PubMed  CAS  Google Scholar 

  • Perez, A., Blissard, D., Sachs, G., and Hersey, S. J., 1989. Evidence for a chloride conductance in secretory membrane of parietal cells, Am. J. Physiol. 256: G299 - G305.

    PubMed  CAS  Google Scholar 

  • Porth, C. M., 1986. Pathophysiology (C. M. Porth, ed.), J. B. Lippincott Co., Philadelphia, pp. 411–439.

    Google Scholar 

  • Quinton, P. M., 1983. Chloride impermeability in cystic fibrosis, Nature 301: 421–422.

    PubMed  CAS  Google Scholar 

  • Rechkemmer, G. R., 1988. The molecular biology of chloride secretion in epithelia, Am. Rev. Respir. Dis. 138: S7 - S9.

    PubMed  CAS  Google Scholar 

  • Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grselczak, Z., Zielenski, J., Lok, S., Playsic, N., Chou, J.-L., Drumm, M. L.,, Iannuz_zi M. C., Collins, F. S., and Tsui, L.-C., 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA, Science 245: 1066–1073.

    Google Scholar 

  • Robinson, S. P., and Downton, W. J. S., 1984. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves, Arch. Biochem. Biophys. 228: 197–206.

    PubMed  CAS  Google Scholar 

  • Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. I., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L.-C., and Collins, F. S., 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping, Science 245: 1059–1065.

    PubMed  CAS  Google Scholar 

  • Roos, A., and Boron, W. F., 1981. Intracellular pH, Physiol. Rev. 61: 296–434.

    PubMed  CAS  Google Scholar 

  • Sachs, G., 1986. The parietal cell as a therapeutic target, Scand. J. Gastroenterol., Suppl. 118: 1–10.

    CAS  Google Scholar 

  • Sachs, G., Muallem, S., and Hersey, S. J., 1988. Passive and active transport in the parietal cell, Comp. Biochem. Physiol. 90A: 727–731.

    CAS  Google Scholar 

  • Sandusky, P. 0., and Yocum, C. F., 1986. The chloride requirement for photosynthetic oxygen evolution: Factors affecting nucleophilic displacement of chloride from the oxygen-evolving complex, Biochim. Biophys. Acta 849: 85–93.

    CAS  Google Scholar 

  • Schild, L., Giebish, G., and Green, R., 1988. Chloride transport in the proximal renal tubule, Annu. Rev. Physiol. 50: 97–110.

    PubMed  CAS  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard

    Google Scholar 

  • E. A., 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature 328: 221–227.

    Google Scholar 

  • Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallant, E. A., Wallace, R. W., and Frizzel, R. A., 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature 330: 752–754.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. D., Thomas, J. W., Kempner, E. S., Skolnick, P., and Paul, S. M., 1985a. Radiation inactivation studies of the benzodiazepine/y-aminobutyric acid/chloride ionophore complex, J. Neurochem. 45: 108–115.

    PubMed  CAS  Google Scholar 

  • Schwartz, R., Skolnick, P., Seale, T., and Paul, S. M., 1986. Demonstration of GABA/ barbiturate-receptor-mediated chloride transport in rat brain synaptoneurosomes: A functional assay of GABA receptor-effector coupling, Adv. Biochem. Psychopharmacol. 41: 33–49.

    PubMed  CAS  Google Scholar 

  • Shapiro, R., and Riordan, J. F., 1983. Critical lysine residue at the chloride binding site of angiotensin converting enzyme, Biochemistry 22: 5315–5321.

    PubMed  CAS  Google Scholar 

  • Shapiro, R., Holmquist, B., and Riordan, J. F., 1983. Anion activation of angiotensin converting enzyme: Dependence on nature of substrate, Biochemistry 22: 3850–3857.

    PubMed  CAS  Google Scholar 

  • Simchowitz, L., 1988. Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils, J. Gen. Physiol. 91: 835–860.

    PubMed  CAS  Google Scholar 

  • Simchowitz, L., and Roos, A., 1985. Regulation of intracellular pH in human neutrophils, J. Gen. Physiol. 85: 443–470.

    PubMed  CAS  Google Scholar 

  • Skolnick, P., and Paul, S., 1983. New concepts in the neurobiology of anxiety, J. Clin. Psychiat. 44: 12–19.

    CAS  Google Scholar 

  • Skolnick, P., and Paul, S., 1988. The benzodiazepine/GABA receptor chloride channel complex, ISI Atlas of Science 2: 19–22.

    CAS  Google Scholar 

  • Skolnick, P., Havoundjian, H., and Paul, S. M., 1987. Modulation of the benzodiazepineGABA receptor chloride ionophore complex by multiple allosteric sites: Evidence for a barbiturate “receptor,” in Clinical Pharmacology in Psychiatry (Psychopharmacology Series 3) (S. G. Dahl, L. F. Gram, S. M. Paul, and W. Z. Potter, eds.), Springer-Verlag, Berlin, pp. 29–36.

    Google Scholar 

  • Squires, R. F., and Braestrup, C., 1977. Benzodiazepine receptors in rat brain, Nature 266: 732–734.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1978. The band 3 protein of the human red cell membrane: A review, J. Supramolec. Struct. 8: 311–324.

    CAS  Google Scholar 

  • Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Co., pp. 517–540.

    Google Scholar 

  • Tallman, J. F., Thomas, J. W., and Gallager, D. W., 1978. GABAergic modulation of benzodiazepine binding site sensitivity, Nature 274: 383–385.

    PubMed  CAS  Google Scholar 

  • Urano, T., de Serrano, V. S., Gaffney, P. J., and Castellino, F. J., 1988. Effectors of the activation of human [Glu’]plasminogen by human tissue plasminogen activator, Biochemistry 27: 6522–6528.

    PubMed  CAS  Google Scholar 

  • Verkman, A. S., Dix, J. A., and Solomon, A. K., 1983. Anion transport inhibitor binding to band 3 in red blood cell membranes, J. Gen. Physiol. 81: 421–449.

    PubMed  CAS  Google Scholar 

  • Verkman, A. S., Takla, R., Sefton, B., Basbaum, C., and Widdicombe, J. H., 1989. Quantitative fluorescence measurement of chloride transport mechanisms in phospholipid vesicles, Biochemistry 28: 4240–4244.

    PubMed  CAS  Google Scholar 

  • Wangemann, P., Wittner, M., Di Stefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Greger, R., 1986. Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship, Pflügers Arch. Eur. J. Phys. 407 (S2): 5128 - S141.

    Google Scholar 

  • Weiss, S. J., 1983. Oxygen as a weapon in the phagocyte armamentarium, in Handbook of Inflammation, Vol. 4 ( P. A. Ward, ed.), Elsevier, Amsterdam, pp. 37–87.

    Google Scholar 

  • Weiss, S. J., Peppin, G., Ortiz, X., Ragsdale, C., and Test, S. T., 1985. Oxidative autoactivation of latent collagenase by human neutrophils, Science 227: 747–749.

    PubMed  CAS  Google Scholar 

  • Welsh, M. J., 1986. An apical-membrane chloride channel in human tracheal epithelium, Science 232: 1648–1650.

    PubMed  CAS  Google Scholar 

  • Welsh, M. J., and Liedtke, C. M., 1986. Chloride and potassium channels in cystic fibrosis airway epithelia, Nature 322: 467–470.

    PubMed  CAS  Google Scholar 

  • Widdicombe, J. H., Welsh, M. J., and Finkbeiner, W. E., 1985. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium, Proc. Natl. Acad. Sci. USA 82: 6167–6171.

    PubMed  CAS  Google Scholar 

  • Willumsen, N. J., and Boucher, R. C., 1989. Activation of an apical Cl-conductance by Cat+ ionophores in cystic fibrosis airway epithelia, Am. J. Physiol. 256: C226 - C233.

    PubMed  CAS  Google Scholar 

  • Wright, E. M., and Diamond, J. M., 1977. Anion selectivity in biological systems, Physiol. Rev. 57: 109–156.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biochemistry of Inorganic Chloride. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics