Skip to main content

Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 12))

Abstract

Methane oxidation became a subject of scientific inquiry when Alessandro Volta observed in 1776 that gas bubbles collected from a pond were combustible. Methane was subsequently exploited as a source of heat and light. However, in spite of its commercial significance, the biological and ecological aspects of methane oxidation were largely ignored until the pioneering work of Söhngen (1906), who first isolated methane-oxidizing bacteria (MOB). [Quayle (1987) notes that Lowe probably isolated the first MOB in 1892 without recognizing their ability to oxidize methane.] Little additional progress was made until the 1960s, at which time the systematic efforts of several groups provided methodological tools and details on the taxonomy, physiology, and biochemistry of C1 metabolism. Aside from purely academic motivations, this work was stimulated by: (1) the potential use of methanotrophic bacteria as sources of “single cell protein”; (2) the role of methylotrophic bacteria in food spoilage; (3) the possible use of methanotrophs in the bioremediation of certain halogenated organic pollutants or as agents for commercial biotransformations (Higgins et al., 1980). Ecological studies were slower in development, but a number of important observations established the ubiquity of methanotrophs, the impact of methane oxidation in freshwater and some marine systems, and the potential for anaerobic as well as aerobic methane oxidation (see Hanson, 1980, and Rudd and Taylor, 1980, for earlier reviews).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramochkina, F. N., Bezrukova, L. V., Koshelev, A. V., Gal’chenko, V. F., and Ivanov, M. V., 1987, Microbial oxidation of methane in a body of fresh water, Mikrobiologiya 56:464–471.

    CAS  Google Scholar 

  • Alperin, M. J., and Reeburgh, W. S., 1984, Geochemical observations supporting anaerobic methane oxidation, in: Microbial Growth on C-1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 282–289.

    Google Scholar 

  • Alperin, M. J., and Reeburgh, W. S., 1985, Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol. 50:940–945.

    PubMed  CAS  Google Scholar 

  • Alperin, M. J., Reeburgh, W. S., and Whiticar, M. J., 1988, Carbon and hydrogen isotope fractionation rseulting from anaerobic methane oxidation, Global Biogeochem. Cycles 2:279–288.

    CAS  Google Scholar 

  • Alvarez-Cohen, L., and McCarty, P. L., 1991, Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture, Appl. Environ. Microbiol. 57:228–235.

    PubMed  CAS  Google Scholar 

  • Anthony, C., 1982, The Biochemistry of Methylotrophs, Academic Press, New York.

    Google Scholar 

  • Arciera, D. T., Vannelli, T., Logan, M., and Hooper, A. B., 1989, Degradation of trichlorethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea, Biochem. Biophys. Res. Commun. 159:640–643.

    Google Scholar 

  • Aselmann, I., and Crutzen, P. J., 1989, Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem. 8:307–358.

    CAS  Google Scholar 

  • Barker, J. F., and Fritz, P., 1981, Carbon isotope fractionation during microbial methane oxidation, Nature 293:289–291.

    CAS  Google Scholar 

  • Barnes, R. O., and Goldberg, E. D., 1976, Methane production and consumption in anoxic marine sediments, Geology 4:297–300.

    CAS  Google Scholar 

  • Bédard, C., and Knowles, R., 1989, Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers, Microbiol. Rev. 53:68–84.

    PubMed  Google Scholar 

  • Blake, D. R., and Rowland, F. S., 1988, Continuing worldwide increase in tropospheric methane, 1978–1987, Science 239:1129–1131.

    PubMed  CAS  Google Scholar 

  • Born, M., Dörr, H., and Ingeborg, L., 1990, Methane consumption in aerated soils of the temperate zone, Tellus 42(B):2–8.

    Google Scholar 

  • Bowman, J. P., Skerratt, J. H., Nichols, P. D., and Sly, L. I., 1990, Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria, FEMS Microbiol. Ecol. 85:15–22.

    Google Scholar 

  • Brinch-Iversen, J., and King, G. M., 1990, Effects of substrate concentration, growth state, and oxygen availability on relationships among bacterial carbon, nitrogen and phospholipid phosphorous content, FEMS Microbiol. Ecol. 74:345–355.

    CAS  Google Scholar 

  • Brooks, J. M., Kennicutt, I. M. C., Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., and Vetter, R. D., 1987, Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon sources, Science 238:1138–1142.

    PubMed  CAS  Google Scholar 

  • Brusseau, G. A., Tsien, H.-C., Hanson, R. S., and Wackett, L. P., 1990, Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity, Biodegradation 1:19–29.

    PubMed  CAS  Google Scholar 

  • Bulygina, E. S., Galchenko, V. F., Govorukhina, N. I., Netrusov, A. I., Nikitin, D. I., Trotsenko, Y. A., and Chumakov, K. M., 1990, Taxonomic studies on methylotrophic bacteria by 5S ribosomal RNA sequencing, J. Gen. Microbiol. 136:441–446.

    PubMed  CAS  Google Scholar 

  • Burke, R. A., Barber, T. R., and Sackett, W. M., 1988, Methane flux and stable hydrogen and carbon isotopic composition of sedimentary methane from the Florida Everglades, Global Biogeochem. Cycles 2:329–340.

    CAS  Google Scholar 

  • Burrows, K. J., Cornish, A., Scott, D., and Higgins, I. G., 1984, Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b, J. Gen. Microbiol. 130:3327–3333.

    CAS  Google Scholar 

  • Cantrell, C. A., Shetter, R. E., McDaniel, A. H., Calvert, J. G., Davidson, J. A., Lowe, D. C., Tyler, S. C., Cicerone, R. J., and Greenberg, J. P., 1990, Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res. 95:22455–22462.

    CAS  Google Scholar 

  • Cardy, D. L. N., Laidler, V., Salmond, G. P. C., and Murrell, J. C., 1991, The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene, Arch. Microbiol. 156:477–483.

    PubMed  CAS  Google Scholar 

  • Cary, S. C., Fisher, C. R., and Feibeck, H., 1988, Mussel growth supported by methane as sole carbon and energy source, Science 240:78–80.

    PubMed  CAS  Google Scholar 

  • Cary, S. C., Fry, B., Felbeck, H., and Vetter, R. D., 1989, Multiple trophic resources from a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment, Mar. Biol. 100:411–418.

    Google Scholar 

  • Cavanaugh, C. M., 1983, Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats, Nature 302:58–61.

    CAS  Google Scholar 

  • Cavanaugh, C. M., 1985, Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments, Bull. Biol. Soc. Wash. 6:373–388.

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts, Science 213:340–342.

    PubMed  CAS  Google Scholar 

  • Cavanaugh, C. M., Levering, P. R., Maki, J. S., Mitchell, R., and Lidstrom, M. E., 1987, Symbiosis of methylotrophic bacteria and deep-sea mussels, Nature 325:346–348.

    Google Scholar 

  • Chanton, J., Crill, P., Bartlett, K., and Martens, C. S., 1988a, Amazon capims (floating grassmats): A source of 13C enriched methane to the troposphere, Geophys. Res. Lett. 16:799–802.

    Google Scholar 

  • Chanton, J. P., Pauly, G. G., Martens, C. S., Blair, N. E., and Dacey, J. W. H., 1988b, Carbon isotopie composition of methane in Florida Everglades soils and fractionation during its transport to the troposphere, Global Biogeochem. Cycles 2:245–252.

    Google Scholar 

  • Chanton, J. P., Whiting, G. J., Showers, W. J., and Crill, P. M., 1992, Methane flux from Peltandra virginica: stable isotope tracing and chamber effects, Global Biogeochem. Cycles 6:15–32.

    CAS  Google Scholar 

  • Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1990, Ice-core record of atmospheric methane over the past 160,000 years, Nature 345:127–131.

    CAS  Google Scholar 

  • Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, I. M. C., Bidigare, R., and Andersen, A., 1986, A methanotrophic molluscan (Bivalvia: Mytilidae) symbiosis: Mussels fueled by gas, Science 233:1306–1308.

    PubMed  CAS  Google Scholar 

  • Cicerone, R. J., and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles 2:299–327.

    CAS  Google Scholar 

  • Cicerone, R. J., and Shetter, J. D., 1981, Sources of atmospheric methane: Measurements in rice paddies and a discussion, J. Geophys. Res. 86:7203–7209.

    CAS  Google Scholar 

  • Colby, J., Stirling, D. I., and Dalton, H., 1977, The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds, Biochem. J. 165:395–402.

    PubMed  CAS  Google Scholar 

  • Coleman, D. D., Risatti, J. B., and Schoell, M., 1981, Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria, Geochim. Cosmochim. Acta 45:1033–1037.

    CAS  Google Scholar 

  • Collins, M. L. P., Buchholz, L. A., and Remsen, C. C., 1991, Effect of copper on Methylomonas albus BG8, Appl. Environ. Microbiol. 57:1261–1264.

    PubMed  CAS  Google Scholar 

  • Conrad, R., 1984, Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, and CH4), in: Perspectives on Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), American Society for Microbiology, Washington, D.C., pp. 461–467.

    Google Scholar 

  • Crill, P. M., 1991, Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil, Global Biogeochem. Cycles 5:319–334.

    CAS  Google Scholar 

  • Crutzen, P. J., 1991, Methane’s sinks and sources, Nature 350:380–381.

    Google Scholar 

  • Dacey, J. W. H., 1980, Internal winds in water lilies: An adaptation for life in anaerobic sediments, Science 210:1017–1019.

    PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., 1981, Pressurized ventilation in the yellow water lily, Ecology 62:1137–1147.

    Google Scholar 

  • Dacey, J. W. H., 1987, Knudsen-transitional flow and gas pressurization in leaves of Nelumbo, Plant Physiol. 85:199–203.

    PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., and Klug, M. J., 1979, Methane efflux from lake sediments through water lilies, Science 203:1253–1254.

    PubMed  CAS  Google Scholar 

  • Dalton, H., 1977, Ammonia oxidation by the methane-oxidizing bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol. 114:272–279.

    Google Scholar 

  • Dalton, H., 1980, Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes, Adv. Appl. Microbiol. 26:71–87.

    CAS  Google Scholar 

  • Dalton, H., and Higgins, I. J., 1987, Physiology and biochemistry of methylotrophic bacteria, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Dordrecht, pp. 89–94.

    Google Scholar 

  • Dalton, H., Prior, S. D., Leak, D. J., and Stanley, S. H., 1984, Regulation and control of methane monooxygenase, in: Microbial Growth on C 1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 75–82.

    Google Scholar 

  • Dando, P. R., and Southward, A. J., 1986, Chemoautotrophy in bivalve molluscs of the genus Thyasira, J. Mar. Biol. Assoc. U.K. 66:915–929.

    CAS  Google Scholar 

  • Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B., and Terwilliger, R. C., 1985, Sulphur-oxidizing bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera, Mar. Ecol. Prog. Ser. 23:85–98.

    CAS  Google Scholar 

  • Dando, P. R., Austen, M. C., Burke, J. R. A., Kendall, M. A., Kennicutt, I. M. C., Judd, A. G., Moore, D. C., O’Hara, S. C. M., Schmaljohann, R., and Southward, A. J., 1991, Ecology of a North Sea pockmark with an active methane seep, Mar. Ecol. Prog. Ser. 70:49–63.

    Google Scholar 

  • Davidson, J. A., Cantrell, C. A., Tyler, S. C., Shetter, R. E., Cicerone, R. J., and Calvert, J. G., 1987, Carbon kinetic isotope effect in the reaction of CH4 with HO, J. Geophys. Res. 92:2195–2199.

    CAS  Google Scholar 

  • DeBont, J. A. M., Lee, K. K., and Bouldin, D. F., 1978, Bacterial methane oxidation in a rice paddy, Ecol. Bull. 26:91–96.

    Google Scholar 

  • Devol, A. H., and Ahmed, S. I., 1981, Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291:407–408.

    CAS  Google Scholar 

  • Devol, A. H., Anderson, J. J., Kuivila, K., and Murray, J. W., 1984, A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet, Geochim. Cosmochim. Acta 48:993–1004.

    CAS  Google Scholar 

  • Diels, L., and Mergeay, M., 1990, DNA probe-mediated detection of resistant bacteria from soils highly polluted with metals, Appl. Environ. Microbiol. 56:1485–1491.

    PubMed  CAS  Google Scholar 

  • Di Toro, D. M., Paquin, P. R., Subburamu, K., and Gruber, D. A., 1990, Sediment oxygen demand model: Methane and ammonia oxidation, J. Environ. Eng. 116:945–986.

    Google Scholar 

  • Ehhalt, D. H., 1985, Methane in the global atmosphere, Environment 27:6–33.

    Google Scholar 

  • Fechner, E. J., and Hemond, H. F., 1992, Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland, Global Biogeochem. Cycles 6:33–44.

    CAS  Google Scholar 

  • Fisher, C. R., Fisher, J. J., Oremland, R. S., and Bidigare, R. R., 1987, The importance of methane in the metabolism of the bacterial symbionts of two deep-sea mussels, Mar. Biol. 96:59–71.

    CAS  Google Scholar 

  • Fogel, M. M., Taddeo, A. R., and Fogel, S., 1986, Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture, Appl. Environ. Microbiol. 54:720–724.

    Google Scholar 

  • Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D., 1989, Methane monooxygenase from Methylosinus trichosporium OB3b, J. Biol. Chem. 264:10023–10033.

    PubMed  CAS  Google Scholar 

  • Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D., 1990, Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental Applications, Biochemistry 29:6419–6427.

    PubMed  CAS  Google Scholar 

  • Frenzel, P., Thebrath, B., and Conrad, R., 1990, Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance), FEMS Microbiol. Ecol. 73:149–158.

    CAS  Google Scholar 

  • Gal’chenko, V. F., Lein, A., and Ivanov, M., 1989, Biological sinks of methane, in: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (M. O. Andreae and D. S. Schimel, eds.), Wiley, New York, pp. 59–71.

    Google Scholar 

  • Green, J., and Dalton, H., 1986, Steady-state kinetic analysis of soluble methane monooxygenase from Methylococcus capsulatus (Bath), Biochem. J. 236:155–162.

    PubMed  CAS  Google Scholar 

  • Griffiths, R. P., Caldwell, B. A., Cline, J. D., Broich, W. A., and Morita, R. Y., 1982, Field observations of methane concentrations and oxidation rates in the southeastern Bering Sea, Appl. Environ. Microbiol. 44:435–446.

    PubMed  CAS  Google Scholar 

  • Guckert, J. D., Ringelberg, D. B., White, D. C., Bratina, B. J., and Hanson, R. S., 1991, Membrane fatty acids as phenotypic markers for the polyphasic taxonomy of methylotrophs within the proteobacteria, J. Gen. Microbiol. 137:2631–2641.

    PubMed  CAS  Google Scholar 

  • Haber, C. L.,, Allen, L. N., Zhao, S., and Hanson, R. S., 1983, Methylotrophic bacteria biochemical diversity and genetics, Science 221:1147–1153.

    PubMed  CAS  Google Scholar 

  • Hahn, D. Starrenburg, M. J. C., and Akkermans, A. D. L., 1990, Oligonucleotide probes that hybridize with rRNA as a tool to study Frankia strains in root nodules, Appl. Environ. Microbiol. 56: 1342–1346.

    PubMed  CAS  Google Scholar 

  • Hanson, R. S., 1980, Ecology and diversity of methylotrophic bacteria, Adv. Appl. Microbiol. 26:3–39.

    CAS  Google Scholar 

  • Hanson, R. S., Tsuji, K., Bastien, C., Tsien, H. C., Bratina, B., Brusseau, G., and Machlin, S., 1990a, Genetic and biochemical studies of methylotrophic bacteria, in: Coal and Gas Biotechnology (C. Aiken and J. Smith, eds.), Institute for Gas Technology, Chicago, pp. 215–231.

    Google Scholar 

  • Hanson, R. S., Tsien, H. C., Tsuji, K., Brusseau, G. A., and Wackett, L. P., 1990b, Biodegradation of low-molecular weight halogenated hydrocarbons by methanotrophic bacteria, FEMS Microbiol. Rev. 87:273–278.

    CAS  Google Scholar 

  • Hanson, R. S., Netrusov, A. I., and Tsuji, K., 1991, The obligate methanotrophic bacteria Methylococcus, Methylomonas, and Methylosinus, in: The Prokaryotes (A. Balows, H. G. Truper, M. Dworkin, and K. Schliefer, eds.), Springer-Verlag, Berlin, pp. 2350–2364.

    Google Scholar 

  • Hao, W. M., Scharffe, D., Crutzen, P. J., and Sanhueza, E., 1988, Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season, J. Atmos. Chem. 7:93–105.

    CAS  Google Scholar 

  • Harms, N., de Vries, G. E., Maurer, K., Hoogendijk, J., and Stouthamer, A. H., 1987, Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans, J. Bacteriol. 169:3969–3975.

    PubMed  CAS  Google Scholar 

  • Harriss, R. C., Sebacher, D. I., and Day, F. P., Jr., 1982, Methane flux in the Great Dismal Swamp, Nature (Lond.) 297:673–674.

    CAS  Google Scholar 

  • Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B., and Flebbe, P. A., 1985, Methane flux from northern peatlands, Nature 315:652–654.

    CAS  Google Scholar 

  • Harriss, R. C., Sebacher, D. L, Bartlett, K. B., Bartlett, D. S., and Crill, P. M., 1988, Sources of atmospheric methane in the south Florida environment, Global Biogeochem. Cycles 2:231–243.

    CAS  Google Scholar 

  • Harrits, S. M., and Hanson, R. S., 1980, Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin, Limnol. Oceanogr. 25:412–421.

    CAS  Google Scholar 

  • Hemond, H. F., Nuttle, W. K., Burke, R. W., and Stolzenbach, K. D., 1984, Surface infiltration in salt marshes: Theory, measurement, and biogeochemical implications, Water Resour. Res. 20:591–600.

    CAS  Google Scholar 

  • Henry, S. M., and Grbic-Galic, D., 1990, Effect of mineral media on trichloroethylene oxidation by aquifer methanotrophs, Micob. Ecol. 20:151–169.

    CAS  Google Scholar 

  • Henry, S. M., and Grbic-Galic, D., 1991, Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer, Appl. Environ. Microbiol. 57:236–244.

    PubMed  CAS  Google Scholar 

  • Henson, J. M., Yates, M. V., Cochran, J. W., and Shackleford, D. L., 1988, Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane, FEMS Microbiol. Ecol. 53:193–201.

    CAS  Google Scholar 

  • Heyer, J., and Suckow, R., 1985, Ökologische untersuchungen der methanoxydation in einem sauren Moorsee, Limnologica 16:247–266.

    CAS  Google Scholar 

  • Heyer, J., Malaschenko, Y., Berger, U., and Budkova, E., 1984, Verbreitung methanotropher Bakterien, Z. Allg. Mikrobiol. 24:725–744.

    Google Scholar 

  • Higgins, I. J., Best, D. J., and Hammond, R. C., 1980, New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential, Nature 286:561–564.

    PubMed  CAS  Google Scholar 

  • Higgins, I. J., Best, D. J., Hammond, R. C., and Scott, D., 1981, Methane-oxidizing microorganisms, Microbial Rev. 45:556–590.

    CAS  Google Scholar 

  • Holtzapfel-Pschorn, A., Conrad, R., and Seiler, W., 1985, Production, oxidation and emission of methane in rice paddies, FEMS Microbiol. Ecol. 31:343–351.

    Google Scholar 

  • Holtzapfel-Pschorn, A., Conrad, R., and Seiler, W., 1986, Effects of vegetation on the emission of methane from submerged paddy soil, Plant Soil 92:223–233.

    Google Scholar 

  • Hovland, M., and Thomsen, E., 1989, Hydrocarbon-based communities in the North Sea? Sarsia 74:29–42.

    Google Scholar 

  • Hyman, M. R., and Wood, P. R., 1983, Methane oxidation by Nitrosomonas europaea, Biochem. J. 212:31–37.

    PubMed  CAS  Google Scholar 

  • Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.

    PubMed  CAS  Google Scholar 

  • Iversen, N., and Jørgensen, B. B., 1985, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark), Limnol. Oceanogr. 30:944–955.

    CAS  Google Scholar 

  • Iversen, N., Oremland, R. S., and Klug, M. J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation, Limnol. Oceanogr. 32:804–818.

    CAS  Google Scholar 

  • Janssen, D. B., Grobben, G., Hoekstra, R., Oldenhuis, R., and Witholt, B., 1988, Degradation of trans-1,2-dichloroethene by mixed and pure culture of methanotrophic bacteria, Appl. Microbiol. Biotechnol. 29:392–399.

    CAS  Google Scholar 

  • Joergensen, L., 1985, Methane oxidation by Methylosinus trichosporium measured by membrane inlet mass spectrometry, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), Academic Press, New York, pp. 287–294.

    Google Scholar 

  • Joergensen, L., and Degn, H., 1983, Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria, FEMS Microbiol. Lett. 20:331–335.

    CAS  Google Scholar 

  • Jones, R. D., and Morita, R. Y., 1983, Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea, Appl. Environ. Microbiol. 45:401–410.

    PubMed  CAS  Google Scholar 

  • Jones, H. A., and Nedwell, D. B., 1990, Soil atmosphere concentration profiles and methane emission rates in the restoration covers above landfill sites: Equipment and preliminary results, Waste Manage. Res. 8:21–31.

    CAS  Google Scholar 

  • Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A., and McElroy, M. B., 1983, Production of nitrous oxide and consumption of methane by forest soil, Geophys. Res. Lett. 10:1156–1159.

    CAS  Google Scholar 

  • Keller, M., Kaplan, W. A., and Wofsy, S. C., 1986, Emissions of N2O, CH4 and CO2 from tropical forest soils, J. Geophys. Res. 91(D):11791–11802.

    Google Scholar 

  • Keller, M., Mitre, M. E., and Stallard, R. F., 1990, Consumption of atmospheric methane in tropical soils of central Panama: Effects of agricultural development, Glob. Biogeochem. Cyc. 4:21–28.

    CAS  Google Scholar 

  • Kennicutt, M. C., II, Brooks, J. M., Bidigare, R. R., Fay, R. R., Wade, T. L., and McDonald, T. J., 1985, Vent-type taxa in a hydrocarbon seep region on the Louisiana slope, Nature 317:351–353.

    CAS  Google Scholar 

  • Kennicutt, M. C., Brooks, J. M., Bidigare, R. R., McDonald, S. J., Adkison, D. L., and Macko, S. A., 1989, An upper slope “cold” seep community: Northern California, Limnol. Oceanogr. 34: 635–640.

    CAS  Google Scholar 

  • Khalil, M. A. K., and Rasmussen, R. A., 1983, Sources, sinks and seasonal cycles of atmospheric methane, J. Geophys. Res. 88:5131–5144.

    CAS  Google Scholar 

  • King, G. M., 1990a, Regulation by light of methane emission from a Danish wetland, Nature 345: 513–515.

    CAS  Google Scholar 

  • King, G. M., 1990b, Dynamics and controls of methane oxidation in a Danish wetland sediment, FEMS Microbiol. Ecol. 74:309–323.

    CAS  Google Scholar 

  • King, G. M., Skovgaard, H., and Roslev, P., 1990, Methane oxidation in sediments and peats of a subtropical wetland, the Florida Everglades, Appl. Environ. Microbiol. 56:2902–2911.

    PubMed  CAS  Google Scholar 

  • King, G. M., Roslev, P., and Adamsen, A. P., 1991, Controls of methane oxidation in a Canadian wetland and forest soils, Trans. Am. Geophys. Union. 72:79.

    Google Scholar 

  • King, S. L., Quay, P. D., and Lansdown, J. M., 1989, The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations, J. Geophys. Res. 94(D): 18273–18277.

    Google Scholar 

  • Knowles, R., and Topp, E., 1988, Some factors affecting nitrification and the production of nitrous oxide by the methanotrophic bacterium Methylosinus trichosporium OB3b, in: Current Perspectives in Environmental Biogeochemistry (G. Giovannozzi-Sermanni and P. Nannipieri, eds.), Consiglio Nazionale delle Ricerche-I.P.R.A., Rome, pp. 383–393.

    Google Scholar 

  • Koch, A. L., 1990, Diffusion: The crucial process in many aspects of the biology of bacteria, Adv. Microb. Ecol. 11:37–70.

    Google Scholar 

  • Komagata, K., 1990, Taxonomy of facultative methylotrophs, in: Aerobic Photosynthetic Bacteria (K. Harashima, T. Shiba, and N. Murata, eds.), Springer-Verlag, Berlin, pp. 25–36.

    Google Scholar 

  • Krämer, M., Baumgärtner, M., Bender, M., and Conrad, R., 1990, Consumption of NO by methanotrophic bacteria in pure culture and in soil, FEMS Microbiol. Ecol. 73:345–350.

    Google Scholar 

  • Kuivila, K. M., Murray, J. W., Devol, A. H., Lidstrom, M. E., and Reimers, C. E., 1988, Methane cycling in the sediments of Lake Washington, Limnol. Oceanogr. 33:571–581.

    CAS  Google Scholar 

  • Lamb, S. C., and Garver, J. C., 1980, Batch-and continuous culture studies of a methane-utilizing mixed culture, Biotechnol. Bioeng. XXII:2097–2118.

    Google Scholar 

  • Lanzarone, N. A., and McCarty, P. L., 1990, Column studies on methanotrophic degradation of trichloroethene and 1,2-dichloroethane, Ground Water 28:910–919.

    CAS  Google Scholar 

  • Leak, D. J., and Dalton, H., 1986, Growth yields of methanotrophs. 2. A theoretical analysis, Appl. Microbiol. Biotechnol. 23:477–481.

    CAS  Google Scholar 

  • Lee, S., and Fuhrman, J. A., 1990, DNA hybridization to compare species compositions of natural bacterioplankton assemblages, Appl. Environ. Microbiol. 56:739–746.

    PubMed  CAS  Google Scholar 

  • Lees, V., Owens, N. J. P., and Murrell, J. C., 1991, Nitrogen metabolism in marine methanotrophs, Arch. Microbiol. 157:60–65.

    CAS  Google Scholar 

  • Lidstrom, M. E., 1983, Methane consumption in Framvaren, an anoxic marine fjord, Limnol. Oceanogr. 28:1247–1251.

    CAS  Google Scholar 

  • Lidstrom, M. E., 1988, Isolation and characterization of marine methanotrophs, Antonie van Leeuwenhoek J. Microbiol. Serol. 54:189–199.

    CAS  Google Scholar 

  • Lidstrom, M. E., 1990, Genetics of carbon metabolism in methylotrophic bacteria, FEMS Microbiol. Rev. 87:431–436.

    CAS  Google Scholar 

  • Lidstrom, M. E., and Somers, L., 1984, Seasonal study of methane oxidation in Lake Washington, Appl. Environ. Microbiol. 47:1255–1260.

    PubMed  CAS  Google Scholar 

  • Lidstrom, M. E., Nunn, D. N., Anderson, D. J., Stephens, R. L., and Haygood, M. G., 1987, Molecular biology of methanol oxidation, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Amsterdam, pp. 246–254.

    Google Scholar 

  • Linton, J. D., and Buckee, J. C., 1977, Interactions in a methane-utilizing mixed bacterial culture in a chemostat, J. Gen. Microbiol. 101:219–225.

    Google Scholar 

  • Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium, Appl. Environ. Microbiol. 54:951–956.

    PubMed  CAS  Google Scholar 

  • MacDonald, I. R., Calender, W. R., Burke, J. R. A., McDonald, S. J., and Carney, R. S., 1990, Finescale distribution of methanotrophic mussels at a Louisiana cold seep, Prog. Oceanogr. 24:15–24.

    Google Scholar 

  • Machlin, S. M., and Hanson, R. S., 1988, Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene, J. Bacteriol. 170:4739–4747.

    PubMed  CAS  Google Scholar 

  • Machlin, S. M., Tam, P. E., Bastien, C. A., and Hanson, R. S., 1987, Genetic and physical analysis of Methylobacterium organophilum XX genes encoding methanol oxidation, J. Bacteriol. 170: 141–148.

    Google Scholar 

  • Martens, C. S., and Berner, R. A., 1977, Interstitial water chemistry of Long Island Sound sediments. I. Dissolved gases, Limnol. Oceanogr. 22:10–25.

    CAS  Google Scholar 

  • Matthews, E., and Fung, I. I., 1987, Methane emission from natural wetlands global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles 1:61–86.

    CAS  Google Scholar 

  • Mayer, L. M., Liotta, F. P., and Norton, S. A., 1982, Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine, Water Res. 16:1189–1196.

    CAS  Google Scholar 

  • Megraw, S. R., and Knowles, R., 1987a, Active methanotrophs suppress nitrification in a humisol, Biol. Fertil. Soils 4:205–212.

    CAS  Google Scholar 

  • Megraw, S. R., and Knowles, R., 1987b, Methane production and consumption in a cultivated humisol, Biol. Fertil. Soils 5:56–60.

    CAS  Google Scholar 

  • Megraw, S. R., and Knowles, R., 1989a, Isolation, characterization, and nitrification potential of a methylotroph and two heterotrophic bacteria from a consortium showing methane-dependent nitrification, FEMS Microbiol. Ecol. 62:367–374.

    CAS  Google Scholar 

  • Megraw, S. R., and Knowles, R., 1989b, Methane-dependent nitrate production by a microbial consortium enriched from a cultivated humisol, FEMS Microbiol. Ecol. 62:359–366.

    CAS  Google Scholar 

  • Megraw, S. R., and Knowles, R., 1990, Effect of picolinic acid (2-pyridine carboxylic acid) on the oxidation of methane and ammonia in soil and in liquid culture, Soil Biol. Biochem. 22:635–641.

    CAS  Google Scholar 

  • Moore, T. R., and Knowles, R., 1989, The influence of water table levels on methane and carbon dioxide emissions from peatland soils, Can. J. Soil Sci. 69:33–38.

    CAS  Google Scholar 

  • Mosier, A., Schimel, D., Valentine, D., Bronson, K., and Parton, W., 1991, Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature 350:330–332.

    CAS  Google Scholar 

  • Mountfort, D. O., White, D., and Asher, R. A., 1990, Oxidation of lignin-related aromatic alcohols by cell suspensions of Methylosinus trichosporium, Appl. Environ. Microbiol. 56:245–249.

    PubMed  CAS  Google Scholar 

  • Nagai, S., Mori, T., and Aiba, S., 1973, Investigation and energetics of methane-utilizing bacteria in methane-and oxygen-limited chemostat cultures, J. Appl. Chem. Biotechnol. 23:549–562.

    CAS  Google Scholar 

  • Nichols, P. D., Smith, G. A., Antworth, C. P., Hanson, R. S., and White, D. C., 1985, Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidizing bacteria, FEMS Microbiol. Ecol. 31:327–335.

    CAS  Google Scholar 

  • Nichols, P. D., Henson, J. M., Antworth, C. P., Parsons, J., Wilson, J. T., and White, D. C., 1987, Detection of a microbial consortium including type II methanotrophs by use of phospholipid fatty acids in aerobic halogenated hydrocarbon-degrading soil column enriched with natural gas, Environ. Toxicol. Chem. 6:89–97.

    CAS  Google Scholar 

  • Oldenhuis, R., Vink, R. L. J. M., Janssen, D. B., and Witholt, B., 1989, Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase, Appl. Environ. Microbiol. 55:2819–2826.

    PubMed  CAS  Google Scholar 

  • Oldenhuis, R., Oedzes, J. Y., Waarde, J. J. v. d., and Janssen, D. B., 1991, Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Appl. Environ. Microbiol. 57:7–14.

    PubMed  CAS  Google Scholar 

  • O’Neill, J. D., and Wilkinson, J. F., 1977, Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation, J. Gen. Microbiol. 100:407–412.

    Google Scholar 

  • Oremland, R. S., 1988, The biogeochemistry of methanogenic bacteria, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley-Interscience, New York, pp. 707–770.

    Google Scholar 

  • Oremland, R. S., and Marais, D. D., 1983, Distribution, abundance, and carbon isotope consumption of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake, Geochim. Cosmochim. Acta 47:2107–2114.

    CAS  Google Scholar 

  • Ott, J., Rieger, G., Rieger, R., and Enderes, F., 1982, New mouthless interstitial worms from the sulfide system: Symbiosis with prokaryotes. P.S.Z.N. I: Mar. Ecol. 3:313–333.

    Google Scholar 

  • Page, H. M., Fisher, C. R., and Childress, J. J., 1990, Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts, Mar. Biol. 104:251–257.

    Google Scholar 

  • Pauli, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, C., Corso, W. P., Colubic, S., Sook, J. E., Sikes, E., and Curray, J., 1984, Biological communities at the Florida Escarpment resemble hydrothermal vent taxa, Science 226:965–967.

    Google Scholar 

  • Pauli, C. K., Jull, A. J. T., Toolin, L. J., and Linick, T., 1985, Stable isotope evidence for chemosynthesis in an abyssal seep community, Nature 317:709–711.

    Google Scholar 

  • Pilkington, S. J., and Dalton, H. J., 1991, Purification and characterization of the soluble methane monooxygenase from Methylosinus sporium 5 demonstrates the highly conserved nature of this enzyme in methanotrophs, FEMS Microbiol. Lett. 78:103–108.

    CAS  Google Scholar 

  • Pütz, J., Meinert, F., Wyss, U., Ehlers, R.-U., and Stackebrandt, E., 1990, Development and application of oligonucleotide probes for molecular identification of Xenorhabdus species, Appl. Environ. Microbiol. 56:181–186.

    PubMed  Google Scholar 

  • Putzer, K. P., Buchholz, L. A., Lidstrom, M. E., and Remsen, C. C., 1991, Separation of methanotrophic bacteria by using percoll and its application to isolation of mixed and pure cultures, Appl. Environ. Microbiol. 57:3656–3659.

    PubMed  CAS  Google Scholar 

  • Quay, P. D., King, S. L., Lansdown, J. M., and Wilbur, D. O., 1988, Isotopoic composition of methane released from wetlands: Implications for the increase in atmospheric methane, Global Biogeochem. Cycles 2:385–397.

    CAS  Google Scholar 

  • Quayle, J. R., 1987, An eightieth anniversary of the study of microbial C1 metabolism, in: Microbial Growth on C 1 Compounds (H. W. Van Verseveld and J. A. Duine, eds.), Nijhoff, Dordrecht, pp. 1–5.

    Google Scholar 

  • Reeburgh, W. S., 1980, Anaerobic methane oxidation rate depth distribution in Skan Bay sediments, Earth Planet. Sci. Lett. 47:345–352.

    CAS  Google Scholar 

  • Reeburgh, W. S., 1989, Interaction of sulphur and carbon cycles in marine sediments, in: Evolution of the Global Biogeochemical Sulphur Cycle (P. Brimblecombe and A. Y. Lein, eds.), Wiley, New York, pp. 125–159.

    Google Scholar 

  • Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1992, Black Sea methane geochemistry, Deep-Sea Res. (Black Sea Issue) 38:1189–1210.

    Google Scholar 

  • Remsen, C. C., Minnich, E. C., Stephens, R. S., Buchholz, L., and Lidstrom, M. E., 19889, Methane oxidation in Lake Superior sediments, J. Great Lakes Res. 5:141–146.

    Google Scholar 

  • Ringelberg, D. B., Davis, J. D., Smith, G. A., Pfiffner, S. M., Nichols, P. D., Nickels, J. S., Henson, J. M., Wilson, J. T., Yates, M., Kampbell, D. H., Read, H. W., Stocksdale, T. T., and White, D. C., 1989, Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials, FEMS Microbiol. Ecol. 62:39–50.

    CAS  Google Scholar 

  • Roulet, N. T., Ash, R., and Moore, T. R., 1992, Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res. 97(D):3739–3749.

    Google Scholar 

  • Rudd, J. W. M., and Taylor, C. D., 1980, Methane cycling in aquatic environments, Adv. Aquat. Microbiol. 1:77–150.

    Google Scholar 

  • Rudd, J. W. M., Hamilton, R. D., and Campbell, N. E. R., 1974, Measurement of microbial oxidation of methane in lake water, Limnol. Oceanogr. 19:519–524.

    CAS  Google Scholar 

  • Rudd, J. W., Furutani, A., Flett, R. J., and Hamilton, R. D., 1976, Factors controlling methane oxidation in shield lakes: The role of nitrogen fixation and oxygen concentration, Limnol. Oceanogr. 21:357–364.

    CAS  Google Scholar 

  • Salvas, P. L., and Taylor, B. F., 1984, Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and Methylosinus trichosporium OB3b, Curr. Microbiol. 10:53–56.

    CAS  Google Scholar 

  • Sass, R. L., Fisher, F. M., and Harcombe, P. A., 1990, Methane production and emission in a Texas rice field, Global Biogeochem. Cycles 4:47–68.

    CAS  Google Scholar 

  • Schmaljohann, R., and Flügel, H. J., 1987, Methane-oxidizing bacteria in Pogonophora, Sarsia 72:91–98.

    CAS  Google Scholar 

  • Schmaljohann, R., Faber, E., Whiticar, M. J., and Dando, P. R., 1990, Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak, Mar. Ecol. Prog. Ser. 61:119–124.

    Google Scholar 

  • Schütz, H., Seiler, W., and Conrad, R., 1989a, Processes involved in formation and emission of methane in rice paddies, Biogeochemistry 7:33–53.

    Google Scholar 

  • Schütz, H., Holtzapfel-Pschorn, A., Conrad, R., Rennenberg, H., and Seiler, W., 1989b, A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy, J. Geophys. Res. 94(D)3:16405–16416.

    Google Scholar 

  • Scott, D., Brannan, J., and Higgins, I. J., 1981, The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b, J. Gen. Microbiol. 125:63–72.

    CAS  Google Scholar 

  • Sebacher, D. I., Harriss, R. C., and Bartlett, K. B., 1985. Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual. 14:40–46.

    CAS  Google Scholar 

  • Seiler, W., Conrad, R., and Scharffe, D., 1984, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmos. Chem. 1:171–186.

    CAS  Google Scholar 

  • Sexstone, A. J., and Mains, C. N., 1990, Production of methane and ethylene in organic horizons of spruce forest soils, Soil Biol. Biochem. 22:135–139.

    CAS  Google Scholar 

  • Sheppard, J. C., Westberg, H., Hopper, J. F., and Ganesan, K., 1982, Inventory of global methane sources and their production rates, J. Geophys. Res. 87(C):1305–1312.

    Google Scholar 

  • Sieburth, J. M., Johnson, P. W., Eberhardt, M. A., Sieracki, M. E., Lidstrom, M., and Laux, D., 1987, The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean Methylomonas pelagica sp. nov., Curr. Microbiol. 14:285–293.

    CAS  Google Scholar 

  • Simonet, P., Normand, P., Moiroud, A., and Bardin, R., 1990, Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes, Arch. Microbiol. 153:235–240.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., Howes, B. L., and Garabedian, S. P., 1991, In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests, Appl. Environ. Microbiol. 57:1997–2004.

    PubMed  CAS  Google Scholar 

  • Söhngen, N. L., 1906, Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen, Zentralbl. Bakteriol. Z. Abt. Bd. 15:513–517.

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Rau, G., Feibeck, H., and Flügel, H., 1981, Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism, Nature 293:616–620.

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Barret, R. L., and Ling, R. L., 1986, Chemoautotrophic function of bacterial symbionts in small pogonophora, J. Mar. Biol. Assoc. U.K. 66:415–437.

    CAS  Google Scholar 

  • Stainthorpe, A. C., Salmond, G. P. C., and Dalton, H., 1990, Screening of obligate methanotrophs for soluble methane monooxygenase genes, FEMS Microbiol. Lett. 70:211–218.

    CAS  Google Scholar 

  • Stanley, S. H., Prior, S. D., Leak, D. J., and Dalton, H., 1983, Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane-oxidizing organisms: Studies in batch and continuous cultures, Biotechnol. Lett. 5:487–492.

    CAS  Google Scholar 

  • Steudler, P. A., Bowden, R. D., Mellilo, J. M., and Aber, J. D., 1989, Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature 341:314–316.

    Google Scholar 

  • Stevens, C. M., and Engelkemeir, A., 1988, Stable carbon isotopic composition of methane from some natural and anthropogenic sources, J. Geophys. Res. 93:725–733.

    CAS  Google Scholar 

  • Stevens, C. M., and Rust, F., 1982, The carbon isotopic composition of atmospheric methane, J. Geophys. Res. 87:4879–4882.

    CAS  Google Scholar 

  • Strand, S. E., and Shippert, L., 1986, Oxidation of chloroform in an aerobic soil exposed to natural gas, Appl. Environ. Microbiol. 52:203–205.

    PubMed  CAS  Google Scholar 

  • Sweerts, J.-P. R. A., 1990, Oxygen consumption processes, mineralization and nitrogen cycling at the sediment-water interface of north temperate lakes, Ph.D. dissertation, University of Groningen.

    Google Scholar 

  • Sweerts, J.-P. R. A., Bär-Gilissen, M.-J., Cornelase, A. A., and Cappenberg, T. E., 1991, Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands), Limnol. Oceanogr. 36:1124–1133.

    CAS  Google Scholar 

  • Topp, E., and Knowles, R., 1982, Nitrapyrin inhibits the obligate methylotophs Methylosinus trichosporium and Methylococcus capsulatus, FEMS Microbiol. Lett. 14:47–49.

    CAS  Google Scholar 

  • Topp, E., and Knowles, R., 1984, Effects of nitrapyrin [2-chloro-6-(trichloromethyl)pyridine] on the obligate methanotroph Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 47:258–262.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., Salte, K., Sørheim, R., and Goksøyr, J., 1990a, Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria, Appl. Environ. Microbiol. 56:776–781.

    PubMed  CAS  Google Scholar 

  • Torsvik, V., Goksøyr, J., and Daae, F. L., 1990b, High diversity in DNA of soil bacteria, Appl. Environ. Microbiol. 56:782–787.

    PubMed  CAS  Google Scholar 

  • Tsien, H.-C., Brusseau, G. A., Hanson, R. S., and Wackett, L. P., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55:3155–3161.

    PubMed  CAS  Google Scholar 

  • Tsuji, K., Tsien, H.-C., Hanson, R. S., De Palma, S. R., Scholtz, R., and LaRoche, S., 1990, 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs, J. Gen. Microbiol. 136:1–10.

    PubMed  CAS  Google Scholar 

  • Tyler, S. C., Zimmerman, P. R., Cumberbatch, C., Greenberg, J. P., Westberg, C., and Darlington, J. P. E. C., 1988, Measurements and interpretation of ∂13C of methane from termites, rice paddies and wetlands in Kenya, Global Biogeochem. Cycles 2:341–355.

    CAS  Google Scholar 

  • Vogel, T. M., and McCarty, P., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, Appl. Environ. Microbiol. 49:1080–1083.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21:722–736.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbiol. 55:2960–2964.

    PubMed  CAS  Google Scholar 

  • Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J. S., Southon, J., Shemesh, A., Fairbanks, R., and Broeker, W., 1989, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon, Science 245:286–290.

    PubMed  CAS  Google Scholar 

  • Ward, B. B., 1987, Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus, Arch. Microbiol. 147:126–133.

    CAS  Google Scholar 

  • Ward, B. B., 1990, Kinetics of ammonia oxidation by a marine nitrifying bacterium: Methane as a substrate analogue, Microb. Ecol. 19:211–225.

    CAS  Google Scholar 

  • Ward, B. B., and Kilpatrick, K. A., 1990, Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column, Cont. Shelf Res. 10:1193–1208.

    Google Scholar 

  • Ward, B. B., Kilpatrick, K. A., Novelli, P. C., and Scranton, M. I., 1987, Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters, Nature 327:226–229.

    CAS  Google Scholar 

  • Ward, B. B., Kilpatrick, K. A., Wopat, A. E., Minnich, E. C., and Lidstrom, M. E., 1989, Methane oxidation in Saanich Inlet during summer stratification, Com. Shelf Res. 9:65–75.

    Google Scholar 

  • Whalen, S. C., and Reeburgh, W. S., 1990, Consumption of atmospheric methane by tundra soils, Nature 346:160–162.

    CAS  Google Scholar 

  • Whalen, S. C., Reeburgh, W. S., and Sandbeck, K. A., 1990, Rapid methane oxidation in a landfill cover soil, Appl. Environ. Microbiol. 56:3405–3411.

    PubMed  CAS  Google Scholar 

  • Whiticar, M. J., in press, Isotope tracking of microbial methane formation and oxidation, in: Cycling of Reduced Gases in the Hydrosphere (D. Adams, S. Seitzinger, and P. Crill, eds.).

    Google Scholar 

  • Whiticar, M. J., and Faber, E., 1986, Methane oxidation in sediment and water column environments-isotopic evidence, Adv. Org. Geochem. 10:759–768.

    CAS  Google Scholar 

  • Whittenbury, R., Phillips, K. C., and Wilkinson, J. F., 1970a, Enrichment, isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol. 61:205–218.

    PubMed  CAS  Google Scholar 

  • Whittenbury, R., Davies, S. L., and Davey, J. F., 1970b, Exospores and cysts formed by methane-utilizing bacteria, J. Gen. Microbiol. 61:219–226.

    PubMed  CAS  Google Scholar 

  • Widdel, F., 1988, Microbiology and ecology of sulfate and sulfur-reducing bacteria, in: The Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), Wiley-Interscience, New York, pp. 469–585.

    Google Scholar 

  • Wilson, J. T., and Wilson, B. H., 1985, Biotransformation of trichlorethylene in soil, Appl. Environ. Microbiol. 49:242–243.

    PubMed  CAS  Google Scholar 

  • Wolfe, H. J., and Hanson, R. S., 1980, Identification of methane-utilizing yeasts, FEMS Microbiol. Lett. 7:177–179.

    Google Scholar 

  • Wood, A. P., and Kelly, D. P., 1989, Methylotrophic and autotrophic bacteria isolated from lucinid and thyasirid bivalves containing symbiotic bacteria in the gills, J. Mar. Biol. Assoc. U.K. 69:165–179.

    Google Scholar 

  • Yavitt, J. B., Lang, G. E., and Downey, D. M., 1988, Potential methane production and methane oxidation in peatland ecosystems of the Appalachian Mountains, United States, Global Biogeochem. Cycles 2:253–268.

    CAS  Google Scholar 

  • Yavitt, J. B., Downey, D. M., Lancaster, E., and Lang, G. E., 1990a, Methane consumption in decomposing sphagnum-derived peat, Soil Biol. Biochem. 22:441–447.

    CAS  Google Scholar 

  • Yavitt, J. B., Downey, D. M., Lang, G. E., and Sextone, A. J., 1990b, Methane consumption in two temperature forest soils, Biogeochemistry 9:39–52.

    CAS  Google Scholar 

  • Yoshinari, T., 1985, Nitrite and nitrous oxide production by Methylosinus trichosporium, Can. J. Microbiol. 31:139–144.

    PubMed  CAS  Google Scholar 

  • Zajic, J. E., Volesky, B., and Wellman, A., 1969, Growth of Graphium sp. on natural gas, Can. J. Microbiol. 15:1231–1236.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and Brock, T. D., 1980, Anaerobic methane oxidation: Occurrence and ecology, Appl. Environ. Microbiol. 39:194–204.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

King, G.M. (1992). Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7609-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7609-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7611-8

  • Online ISBN: 978-1-4684-7609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics