Skip to main content

Temporal and Spatial Events in the Calcium Messenger System

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

  • 92 Accesses

Abstract

The great complexity of the central nervous system makes it a difficult object of biochemical study. Yet, some of the most important biochemical discoveries having implications for the field of cell regulation have been made in CNS tissue. A case in point is the discovery by Nishizuka and coworkers of a new kind of protein kinase, the so-called phospholipid-dependent, calcium-activated protein kinase or C-kinase, in brain tissue (Takai et al.). This kinase was found to be distinct from either the classic cAMPdependent or Ca++-CaM-dependent protein kinases. It was, however, found to be activated by Ca++, phospholipids, and diacylglycerols (Takai et al., 1977; Kishimoto et al., 1980). After its discovery in the brain, where it exists in very large amounts, it was found to be widely distributed in animal tissues (Nishizuka and Takai, 1981). Its discovery coincided in time with a significant breakthrough in our understanding of the role of inositol polyphosphatase in the transducing events which occur in the calcium messenger system (Michell, 1975; Berridge, 1984) (see chapters by Agranoff and by Lapetina in this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, R. S. and Eisenberg, E., Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem. 49:921–956 (1980).

    Article  CAS  Google Scholar 

  • Aksoy, M. O., Mras, S., Kamm, K. E., Murphy, R. A., Ca++, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle, Am. J. Physiol. 245:C255–255C270 (1983).

    Google Scholar 

  • Albano, J. D., Brown, B. L., Ekins, R. P., Tait, S. A. and Tait, J. R., The effects of potassium, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II on the concentration of adenosine 3′:5′-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasiculata cells, Biochem. J. 142:391–400 (1974).

    CAS  Google Scholar 

  • Albert, P. R. and Tashjian, A. H., Thyrotropin-releasing hormone-induced spike and plateau in cytosolic free Ca++ concentrations in pituitary cells, J. Biol. Chem. 259:5827–5832 (1984a).

    CAS  Google Scholar 

  • Albert, P. R. and Tashjian, A. H., Relationship of thyrotropin-releasing hormone-induced spike and plateau phases in cytosolic free Ca++ concentrations to hormone secretion: selective blockade using ionomycin and nifedipine, J. Biol. Chem. 259:15350–15363 (1984b).

    CAS  Google Scholar 

  • Alkon, D. L., Calcium-mediated reduction of ionic currents: a biophysical memory trace, Science 226:1037–1045 (1984).

    Article  CAS  Google Scholar 

  • Apfeldorf, W. F. and Rasmussen, H., Angiotensin II induces a transient rise in cytosolic calcium in adrenal zona glomerulosa. (In preparation).

    Google Scholar 

  • Ballocu, L. R. and Cheung, W. Y., The role of calcium in prostaglandin and thromboxane biosynthesis, in: “Calcium and Cell Physiology,” D. Marme, ed., Springer-Verlag, Berlin (1985).

    Google Scholar 

  • Barrett, P., Kojima, I., Kojima, K., Zawalich, K., Isales, C. and Rasmussen, H., Temporal patterns of protein phosphorylation of angiotensin II, A23187 and/or TPA in adrenal glomerulosa cells, Biochem. J. (Submitted), (1986a).

    Google Scholar 

  • Barrett, P., Kojima, I., Kojima, K., Zawalich, K., Isales, C. and Rasmussen, H., Short term memory in the calcium messenger system: evidence for a sustained activation of C-kinase in adrenal glomerulosa cells, Biochem. J. (Submitted) (1986b).

    Google Scholar 

  • Berridge, M. J., Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360 (1984).

    CAS  Google Scholar 

  • Berridge, M. J. and Irvine, R. F., Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321 (1984).

    Article  CAS  Google Scholar 

  • Blumenthal, D. K. and Stull, J. T., Activation of skeletal muscle myosin light chain kinase by calcium and calmodulin, Biochemistry 19:5608–5624 (1980).

    Article  CAS  Google Scholar 

  • Bolton, T. B., Mechanism of action of transmitters and other substances on smooth muscle, Physiol, Rev. 59:606–718 (1973).

    Google Scholar 

  • Busa, W. B. and Nuccitelli, R., Metabolic regulation via intracellular pH, Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15):R409–R438 (1984).

    CAS  Google Scholar 

  • Danthulun, N. R. and Deth, R. C., Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response, Bio-chem. Biophys. Res. Commun. 125:1103–1109 (1984).

    Article  Google Scholar 

  • Delbeke, D., Kojima, I., Dannies, P. and Rasmussen, H., Synergistic stimulation of prolactin release by phorbol ester, A23187, and forskolin, Biochem. Biophys. Res. Commun. 123:735–741 (1984a).

    Article  CAS  Google Scholar 

  • Delbeke, D., Scammell, J. G., Dannies, P. S., Difference in calcium requirements for forskolin-induced release of prolactin from normal pituitary cells and GH4C1 cells in culture, Endocrinology 114:1433–1440 (1984b).

    Article  CAS  Google Scholar 

  • Downes, C. P. and Michell, R. H., The polyphosphoinositide phosphodiesterase of erythrocyte membranes, Biochem. J. 198:133–140 (1981).

    CAS  Google Scholar 

  • Downes, C. P. and Michell, R. H., The control of Ca of the polyphosphoinositide phosphodiesterase and the Ca pump ATPase in human erythrocytes, Biochem. J. 202:53–58 (1982a).

    CAS  Google Scholar 

  • Downes, C. P. and Michell, R. H., Phosphatidylinositol-4 phosphate and phos-phatidylinositol-4,5 bis-phosphate: lipids in search of a function, Cell Calcium 3:467–502 (1982b).

    Article  CAS  Google Scholar 

  • Drust, D. S. and Martin, T. F., Thyrotropin-releasing hormone rapidly and transiently stimulates cytosolic calcium-dependent protein phosphorylation in GH3 pituitary cells, J. Biol. Chem. 257:7566–7573 (1982a).

    CAS  Google Scholar 

  • Drust, D. S., Sutton, C. A. and Martin, T. F., Thyrotropin-releasing hormone and cyclic AMP activate distinctive pathways of proteins phosphorylation in GH pituitary cells, J. Biol. Chem. 257:3306–3312 (1982b).

    CAS  Google Scholar 

  • Drust, D. S. and Martin, T. F., Thyrotropin-releasing hormone rapidly activates protein phosphorylation in GH3 pituitary cells by a lipid-linked, protein kinase C-mediated pathway, J. Biol. Chem. 259:14520–14530 (1984).

    CAS  Google Scholar 

  • Fakunding, J. L., Chow, R. and Catt, K. J., The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells, Endocrinology 105:327–333 (1979).

    Article  CAS  Google Scholar 

  • Fakunding, J. L. and Catt, K. J., Dependence of aldosterone-stimulation in adrenal glomerulosa cells on calcium uptake: effects of lanthanum and verapamil, Endocrinology 107:1345–1353 (1980).

    Article  CAS  Google Scholar 

  • Fearon, C. W. and Tashjian, A. H., Jr., Thyrotropin-releasing-hormone induces redistribution of protein kinase C in GH3C1 rat pituitary cells, J. Biol. Chem. 260 (in press) (1986).

    Google Scholar 

  • Feinstein, M. B., Halenda, S. P. and Zavocio, G. B., Calcium and platelet function, in: “Calcium and Cell Physiology,” D. Marme, ed., Springer-Verlag, Berlin (1985).

    Google Scholar 

  • Forder, J., Scriabine, A. and Rasmussen, H., Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction, J. Pharm. Exp. Ther. 235(2):267–273 (1985).

    CAS  Google Scholar 

  • Foster, R., Lobo, M. V., Rasmussen, H. and Marusic, E. T., Calcium: its role in the mechanism of action of angiotensin II and potassium in aldosterone production, Endocrinology 109:2196–2201 (1981).

    Article  CAS  Google Scholar 

  • Foster, R., Lobo, M. V., Rasmussen, H. and Marusic, E. T., The effect of calcium in the potassium induced depolarization in adrenal glomerulosa cells, FEBS Lett. 149:253–257 (1982).

    Article  CAS  Google Scholar 

  • Fujita, K., Aguilera, G. and Catt, K. J., The role of cyclic AMP in aldosterone production by isolated zona glomerulosa cells, J. Biol. Chem. 254: 8567–8574 (1979).

    CAS  Google Scholar 

  • Gershengorn, M. C., Thyrotropin-releasing hormone stimulation of prolactin release from clonal rat pituitary cells. Evidence for action independent of extracellular calcium, J. Clin. Invest. 67:1769–1776 (1981).

    Article  CAS  Google Scholar 

  • Gershengorn, M. C., Calcium influx is not required for TRH to elevate free cytoplasmic calcium in GH3 cells, Endocrinology 113:1522–1524 (1983).

    Article  CAS  Google Scholar 

  • Gershengorn, M. C. and Thaw, M., Thyrotropin-releasing hormone (TRH) stimulates biphasic elevation of cytoplasmic free calcium in GH3 cells: Further evidence that TRH mobilizes cellular and extracellular Ca++, Endocrinology 116:591–596 (1985).

    Article  CAS  Google Scholar 

  • Holmsen, H., Receptor-controlled phosphatidate synthesis during acid hydrolase secretion from platelets, in:. “Calcium in Biological Systems,” R. P. Rubin, G. B. Weiss, J. W. Putney, Jr., (eds.), Plenum Press, New York (1985).

    Google Scholar 

  • Hyatt, P. J., Tait, J. F. and Tait, A. S., The mechanism of the effect of K+ on the steroidogenesis of rat zona glomerulosa cells of the adrenal cortex: role of cyclic AMP, Proc. R. Soc. Lond. B266:21–42 (1986).

    Article  Google Scholar 

  • Kishimoto, K., Takai, Y., Mori, T., Kikkawa, U. and Nishizuka, Y., Activation of calcium and phospholipid-dependent protein kinase by diacylgly-cerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273–2276 (1980).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K., Kreutter, D. and Rasmussen, H., The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways, J. Biol. Chem. 259:14448–14457 (1984a).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H., Role of calcium fluxes in the sustained phase of angiotensin II mediated aldosterone secretion from adrenal glomerulosa cells, J. Biol. Chem. 260:9177–9184 (1985a).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H., Effect of angiotensin II and K+ on Ca++-efflux and aldosterone production in adrenal glomerulosa cells, Am. J. Physiol. 248:E36–E43 (1985b).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H., Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion, J. Biol. Chem. 260:4248–4256 (1985c).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H., Characteristics of angiotensin II-, K, and ACTH-induced calcium influx in adrenal glomerulosa cells, J. Biol. Chem. 260:9171–9176 (1985d).

    CAS  Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H., Intracellular calcium and adenosine 3;,5;-cyclic monophosphate as mediators of potassium-induced aldosterone secretion, Biochem. J. 228:69–76 (1985e).

    CAS  Google Scholar 

  • Kojima, K., Kojima, I. and Rasmussen, H., Dihydropyridine calcium agonist and antagonists effects on aldosterone secretion Am. J. Physiol. 245: E645–645E650 (1984a).

    Google Scholar 

  • Macara, I. G., Oncogenes, ions and phospholipids, Am. J. Physiol. 248:C3–C11 (1985).

    CAS  Google Scholar 

  • Martin, T. F., Thyrotropin-releasing hormone rapidly activates the phospho-diester hydrolysis of polyphospholinositides in GH3 pituitary cells. Evidence for the role of a polyphosphoinositide-specific phospholipase C in hormone action, J. Biol. Chem. 258:14816–14822 (1983).

    CAS  Google Scholar 

  • Martin, T. F. and Kowalchyk, J. A., Evidence for the role of calcium and diacylglycerol as dual second messengers in thyrotropin-releasing hormone action: involvement of Ca++, Endocrinology 115:1527–1536 (1984).

    Article  CAS  Google Scholar 

  • Montague, W., Morgan, N. G., Rumford, G. M. and Prince, C. A., Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans, Biochem. J. 227:483–489 (1985).

    CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., Vascular smooth muscle: the first recorded Ca2 transients, Pflgers Arch 395:75–77 (1982).

    Article  CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein, J. Physiol. 351: 155–167 (1984).

    CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret, J. Physiol. (Lond) 357:539–551 (1986).

    Google Scholar 

  • Nishizuka, Y. and Takai, Y., Calcium and phospholipid turnover in a new receptor function for protein phosphorylation, in: O. M. Rosen and E. G. Krebs, eds, “Protein Phosphorylation,” New York: Cold Spring Harbor Laboratory (1981).

    Google Scholar 

  • Nishizuka, Y., Calcium, phospholipid turnover and transmembrane signalling, Phil. Trans. Roy. Soc. (Lond) B302:101–112 (1983).

    Article  Google Scholar 

  • Pandol, S. J., Schoeffield, M. S., Sachs, G. and Muallem, S., Role of free cytosolic calcium in secretagogue-stimulated amylase release from dispersed acini from guinea pig pancreas, J. Biol. Chem. 260(18): 10081–10086 (1985).

    CAS  Google Scholar 

  • Parks, S. and Rasmussen, H., Activation of tracheal smooth muscle contraction: synergism between Ca and activators of protein kinase C, Proc. Natl. Acad. Sci. USA 82:8835–8839 (1985).

    Article  Google Scholar 

  • Rasmussen, H. and Barrett, P. Q., Calcium messenger system: an integrated view, Physiol. Rev. 64:938–984 (1984).

    CAS  Google Scholar 

  • Rasmussen, H., Forder, J., Kojima, I. and Scriabine, A., TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122:776–784 (1984).

    Article  CAS  Google Scholar 

  • Sala, G. B., Hyahi, K., Catt, K. J. and Dufan, M. L., Adrenocorticotropin action in isolated adrenal cells, J. Biol. Chem. 254:3861–3865 (1979).

    CAS  Google Scholar 

  • Sha’afi, R. I. and Naccache, P. H., Relationship between calcium, arachi-donic acid metabolites and neutrophil activation, in: “Calcium in Biological Systems,” R. P. Rubin, G. B. Weiss, J. W. Putney, Jr., eds, Plenum Press, New York (1985).

    Google Scholar 

  • Silver, P. J. and Stull, J. T., Phosphorylation of myosin light chain and Phosphorylase in tracheal smooth muscle in response to KCl and carba-chol, Mol. Pharmacol. 25:267–274 (1984).

    CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I., Release of Ca++ from a non-mitochondrial store in pancreatic acinar cell by inositol-1–4,5-trisphophate, Nature (Lond) 306:67–69 (1983).

    Article  CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Inoue, M. and Nishizuka, Y., Studies on a cyclic nucleotide-independent protein kinase and its pro-enzyme in mammalian tissues, J. Biol. Chem. 252:7603–7609 (1977).

    CAS  Google Scholar 

  • Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. and Nishizuka, Y., Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochem. Biophys. Res. Commun. 91:1218–1224 (1979).

    Article  CAS  Google Scholar 

  • Williams, B. C., McDougall, J. G., Tait, J. F. and Tait, S. A., Calcium efflux and steroid output from superfused rat adrenal cells: effects of potassium, adrenocorticotropic hormone, 5-hydroxytryptamine, adeno-sine-3′5′-cyclic monophosphate and angiotensin II and III, Biochim. Biophys. Acta. 639:243–295 (1981).

    Article  Google Scholar 

  • Wolf, M., Cuatrecasas, P. and Sahyoun, N., Interaction of protein kinase C with membranes is regulated by Ca++, phorbol esters, and ATP, J. Biol. Chem. 2260:15718–15722 (1985a).

    Google Scholar 

  • Wolf, M., Levine, H., III, May, W. S., Jr., Cuatrecasas, P. and Sahyoun, N., A model for intracellular translocation of protein kinase C involving synergism between Ca++ and phorbol esters, Nature 317:546–549 (1985b).

    Article  CAS  Google Scholar 

  • Zawalich, W., Brown, C. and Rasmussen, H., Insulin secretion: combined effects of phorbol ester and A23187, Biochem. Biophys. Res. Commun. 117:448–455 (1983).

    Article  CAS  Google Scholar 

  • Zawalich, W., Zawalich, K. and Rasmussen, H., Insulin secretion: combined tolbutamide, forskolin and TPA mimic action of glucose, Cell Calcium 5:551–558 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Rasmussen, H., Barrett, P. (1987). Temporal and Spatial Events in the Calcium Messenger System. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics