Skip to main content

Modern Sand-Rich and Mud-Rich Siliciclastic Aprons: Alternative Base-of-Slope Turbidite Systems to Submarine Fans

  • Chapter
Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems

Part of the book series: Frontiers in Sedimentary Geology ((SEDIMENTARY))

Abstract

Base-of-slope aprons that lack significant channel development and are fed by multiple sediment sources (i.e., numerous slope failures or debris chutes) represent an alternative facies organization to submarine fans that possess channels and are fed by canyon point sources of allochthonous sediment. Two styles of base-of-slope apron deposition are evident: (1) sand-rich aprons with rhythmic, gradational sand and gravel sheets that evolve to basin-plain turbidites as exemplified by Crater Lake aprons, and (2) mud-rich aprons composed of chaotic sediment flow lobes without gradation as exemplified by Ebro margin aprons.

Sand-rich aprons typically occur at the base of steep slopes or fault scarps in volcanically or tectonically active basins (i.e., trench-floor, rift, back-arc, transform basins) in sand-rich areas that lack large point sources. These single or coalesced cones usually are small (several kilometers in length), have their apices at the base-of-slope, decrease gradually in thickness toward the basin center, and lie conformably on the basin floor without erosional truncation of underlying beds. Proximal aprons exhibit numerous discontinuous high-amplitude and wedging seismic reflections together with high sand-to-shale ratios from thick unsorted sand and gravel beds. The proximal aprons evolve gradually to basin-plain environments that exhibit low amplitude, parallel and continuous seismic reflections, and low sand-to-shale ratios from thin and fine-grained turbidite sand layers. The sedimentary processes also evolve gradually from slides on the slope, to a variety of sediment-gravity sheet flows over the aprons, and then to turbidity-current sheet flows over the basin-plain areas.

Mud-rich aprons may occur at the base of any mud-rich basin slope with multiple retrograde failures, but are most common on mud-draped passive margins associated with prograding river deltas. Compared with sand-rich aprons, mud-rich aprons are usually (1) larger (tens of kilometers in length), (2) more lenticular, (3) more elongate and irregular in thickness and shape, (4) thinner at the apex, which may be detached from the slope base, and (5) lacking in gradual gradation of facies at distal margins. They exhibit erosional truncation with underlying beds, possess transparent or chaotic seismic facies throughout, contain chaotic mixtures of deformed mud and sand beds everywhere, and thus appear to be deposited mainly by debris-flow processes without distal gradation to turbidity currents.

Aprons may occur coevally with or evolve into other channelized turbidite systems. Consequently, definition of modern apron facies should help the interpretation of complex associations of aprons and fans, and assist the search for ancient sand-rich aprons that sometimes possess excellent reservoir beds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Alonso, B., 1986: El sistema del abanico profundo del Ebro; Tesis Doctoral; Univ. Barcelona, Barcelona, Spain, 384 p.

    Google Scholar 

  • Alonso, B., Kastens, K.A., Maldonado, A., Malinverno, A., Nelson, C.H., O’Connell, S., Palanques, A., and Ryan, W.B.F., 1985: Morphology of the Ebro Fan Valleys from SeaMARC and Sea BEAM profiles; Geo-Marine Lett., v. 5, p. 141–145.

    Google Scholar 

  • Bacon, C.R., 1983: Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.; J. Volcano]. Geotherm. Res., v. 18, p. 57–115.

    Article  Google Scholar 

  • Baltzer, F., and Masson, D., 1988: Sedimentary processes in the deep parts of the northern Lake Tanganyika (Abstract); Int. Assoc. Sedimentologists International Workshop, Lacustrine facies models in rift systems and related natural resources; Inst. Jaime Aimera, C.S.I.C., Univ. Barcelona, Barcelona, Spain, p. 3.

    Google Scholar 

  • Barber, J.H., Jr., and Nelson, C.H., 1990: Sedimentary history of Crater Lake caldera, in E.T. Drake, G.L. Larson, J. Dymond, and R. Collier, eds., Crater Lake: An ecosystem study; Am. Assoc. Advancement of Science Pacific Section, p. 29–39.

    Google Scholar 

  • Bellaiche, G., Coutellier, V., and Droz, L., 1986: Seismic evidence of widespread mass transport deposits in the Rhône deep-sea fan: Their role in the fan construction; Mar. Geol., v. 71, p. 327–340.

    Google Scholar 

  • Bering Sea EEZ-Scan Scientific Staff, in press: Atlas of the Exclusive Economic Zone, Bering Sea; U.S. Geol. Surv. Miscellaneous Investigations Series 1–2053, scale 1:500,000, in press.

    Google Scholar 

  • Biju-Duval, B., Letouzey, J., and Montadert, L., 1978: Structure and evolution of the Mediterranean basins, in K.J. Hsü, L. Montadert et al., eds., Initial Reports of the Deep Sea Drilling Project, v. 42, part I, p. 951–984.

    Google Scholar 

  • Bouma, A.H., Normark, W.R., and Barnes, N.E., eds., 1985: Submarine fans and related turbidite systems; Springer-Verlag, New York, 351 p.

    Book  Google Scholar 

  • Bowman, M.B.J., Richards, M.T., and Burraclough, R.: Seismic facies of the Jurassic Brae-Miller and Paleocene Andrews submarine fans, Viking Guben, North Sea, in press.

    Google Scholar 

  • Byrne, J.V., 1962: Bathymetry of Crater Lake, Oregon; Oregon Department of Geology and Mineral Industries, The Ore Bin, v. 24, p. 161–164.

    Google Scholar 

  • Carey, S., and Sigurdsson, H., 1984: A model of volcanogenic sedimentation in marginal basins, in B.P. Kokelaar and M.F. Howells, eds., Marginal basin geology; Blackwell, Oxford, p. 37–56.

    Google Scholar 

  • Carlson, P.R., and Karl, H.A., 1984/1985: Mass movement of fine-grained sediment to the basin floor, Bering Sea, Alaska; Geo-Marine Lett., v. 4, p. 221–225.

    Google Scholar 

  • Carlson, P.R., and Karl, H.A., 1988: Development of large submarine canyons in the Bering Sea, indicated by morphologic, seismic, and sedimentologic characteristics; Geol. Soc. Am. Bull., v. 100, p. 1594–1615.

    Article  Google Scholar 

  • Choe, M.Y., and Chough, S.K., 1988: The Hunghae formation, southeast Korea: Miocene debris aprons in back-arc intraslope basin; Sedimentology, v. 35, p. 239–255.

    Google Scholar 

  • Cita, M.B., and Ricci Lucchi, F., eds., 1984: Seismicity and sedimentation; Mar. Geol., v. 55, nos. 1 and 2, 161 p.

    Google Scholar 

  • Coleman, J.H., Prior, D.B., and Lindsay, J.F., 1983: Deltaic influences on shelf edge instability processes, in D.J. Stanley and G.T. Moore, eds., The shelf-break: Critical interface on continental margins; Soc. Econ. Paleont. Mineral. Spec. Publ. 33, p. 121–137.

    Google Scholar 

  • Cook, H.E., McDaniels, P.H., Mountjow, F.W., and Pray, L.C., 1972: Allochthonous carbonate debris flows at Devonian Bank (“reef”) margins, Alberta, Canada; Bull. Can. Petrol. Geol., v. 20, p. 439–497.

    Google Scholar 

  • Cook, H.E., Hine, A.C., and Mullins, H.T., 1983: Platform margin and deep water carbonates; Soc. Econ. Paleont. Mineral. Short Course 12.

    Google Scholar 

  • Damuth, J.E., Flood, R.D., Kowsmann, R.O., Belderson, R.H., and Gorin, M.A., 1988: Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies; Am. Assoc. Petrol. Geol. Bull., v. 72, p. 885–911.

    Google Scholar 

  • Dingle, R.V., 1977: The anatomy of a large submarine slump on a sheared con-tinental margin (SE Africa); J. Geol. Soc. London, v. 134, p. 293–310.

    Article  Google Scholar 

  • Doyle, L.J., and Bourrouilh, R., eds., 1987: Megaturbidites; Geo-Marine Lett.,v. 7, p. 59–118.

    Google Scholar 

  • Droz, L., and Bellaiche, G., 1985: Rhône deep-sea fan: Morphostructure and growth pattern; Am. Assoc. Petrol. Geol. Bull., v. 69, p. 460–479.

    Google Scholar 

  • Eberli, G.P., 1987: Carbonate turbidite sequences deposited in rift-basins of the Jurassic Tethys ocean (southeast Alps, Switzerland); Sedimentology, v. 34, p. 363–388.

    Article  Google Scholar 

  • Embley, R.W., 1980: The role of mass transport in the distribution and character of deep-ocean sediments with special reference to the north Atlantic; Mar. Geol., v. 38, p. 23–50.

    Google Scholar 

  • Enos, P., 1977: Tamabra limestone of the Poza Rica trend, Cretaceous, Mexico, in H.E. Cook and P. Enos, eds., Deep-water carbonate environments; Soc. Econ. Paleont. Mineral. Spec. Publ. 25, p. 273–314.

    Google Scholar 

  • Enos, P., 1985: Cretaceous debris reservoirs, Poza Rica field, Veracruz, Mexico, in P.O. Roehl and P.W. Choquette, eds., Carbonate petroleum reservoirs; Springer, Berlin, p. 455–469.

    Chapter  Google Scholar 

  • Farquharson, G.W., Hamer, R.D., and Ineson, J.R., 1984: Proximal volcaniclastic sedimentation in a Cretaceous back-arc basin, northern Antarctic Peninsula, in G.P. Kokelaar and M.F. Howells, eds., Marginal basin geology; Blackwell, Oxford, p. 219–229.

    Google Scholar 

  • Farrdn, M., and Maldonado, A., 1990: The Ebro continental shelf: quaternary seismic stratigraphy and growth patterns, in C.H. Nelson and A. Maldonado, eds., The Ebro continental margin, northwestern Mediterranean Sea: Mar. Geol., v. 95, in press.

    Google Scholar 

  • Field, M.E., and Gardner, J.V., 1990: Pliocene-Pleistocene growth of the Rio Ebro margin, NE Spain: A prograding slope model; Geol. Soc. Am. Bull., v. 102, p. 721–733.

    Article  Google Scholar 

  • Fornari, D.J., Moore, J.G., and Calk, L., 1979: A large submarine sand-rubble flow on Kilauea volcano, Hawaii; J. Volcanol. Geotherm. Res., v. 5, p. 239256.

    Google Scholar 

  • Hall, B.R., and Link, M.H., 1990: Reservoir description of the Webster Zone, a Miocene turbidite sandstone reservoir, Midway-Sunset Field, California, in J. Barwis, et al., eds., Sandstone reservoirs: Springer-Verlag, New York, p. 509–533.

    Chapter  Google Scholar 

  • Hamilton, E.L., 1959, Thickness and consolidation of deep-sea sediments: Geol. Soc. Am. Bull., v. 70, p. 1399–1424.

    Article  Google Scholar 

  • Jiang, Xi-Jiang, 1988: Seismic stratigraphie analysis and petroleum exploration of Paleogene lacustrine sandstone bodies, offshore Bohai basin, China, in A.W. Bally, ed., Atlas of seismic stratigraphy; Am. Assoc. Petrol. Geol. Studies Geol. 27, v. 2, p. 22–33.

    Google Scholar 

  • Johns, D.R., Mutti, E., Rosell, J., and Seguret, M., 1981: Origin of a thick. redeposited carbonate bed in Eocene turbidites of the Hecho Group, south-central Pyrenees, Spain; Geology, v. 9, p. 161–164.

    Article  Google Scholar 

  • Kastens, K., and Shor, A.N., 1985: Depositional processes of a meandering channel on Mississippi fan; Am. Assoc. Petrol. Geol. Bull., v. 69, p. 190–202.

    Google Scholar 

  • Leitch, E.C., 1984: Marginal basins of the SW Pacific and the preservation and recognition of their ancient analogues: A review, in B.P. Kokelaar and M.F. Howells, eds., Marginal basin geology; Blackwell, Oxford, p. 97–108.

    Google Scholar 

  • Link, MH., and Stitt, L.T., 1987: Middle to late Miocene Mint Canyon and Castaic deposition in southern Ridge Basin, California, in M.H. Link, ed., Sedimentary facies, tectonic relations, and hydrocarbon significance in Ridge Basin, California; Soc. Econ. Paleont. Mineral. Pacific Section, p. 21–33.

    Google Scholar 

  • Maldonado, A., Got, H., Monaco, A., O’Connell, S., and Mirabile, S., 1985: Valencia Fan (northwestern Mediterranean): Distal deposition fan variant; Mar. Geol., v. 62, p. 295–319.

    Google Scholar 

  • Manley, P.L., and Flood, R.D., 1988: Cyclic sediment deposition within Amazon deep-sea fan; Am. Assoc. Petrol. Geol. Bull., v. 72, p. 912–925.

    Google Scholar 

  • Moore, J.G., Clague, D.A., Holcomb, R.T., Lipman, P.W., Normark, W.R., and Torresan, M.E., 1989: Prodigious submarine slides on the Hawaiian Ridge; J. Geophys. Res., v$194, no$11312, p. 17, 465–17, 484.

    Google Scholar 

  • Mullins, H.T., and Cook, H.E., 1986: Carbonate aprons models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration; Sediment. Geol., v. 48, p. 37–79.

    Google Scholar 

  • Mutti, E., 1979: Turbidites et cones sous-marins profonds, in P. Homewood, ed., Sedimentation detritique (fluviatile, littorale et marine); Univ. Fribourg, Fribourg, Switzerland, p. 353–419.

    Google Scholar 

  • Mutti, E., and Ricci Lucchi, E, 1972: Turbidites of the northern Appenines; introduction to facies analysis; Int. Geol. Rev., v. 20, p. 125–166 ( English translation by T.H. Nilsen ).

    Google Scholar 

  • Nardin, T.R., 1983: Late Quaternary depositional systems and sea level change, Santa Monica and San Pedro basins, California Continental Borderland; Am. Assoc. Petrol. Geol. Bull., v. 67, p. 1104–1124.

    Google Scholar 

  • Nardin, T.R., Edwards, B.D., and Gorsline, D.S., 1979a: Santa Cruz basin, California borderland: Dominance of slope processes in basin sedimentation, in Doyle, L.J., and Pilkey, O.H., eds., The geology of continental slopes; Soc. Econ. Paleont. Mineral. Spec. Publ. 27, p. 209–221.

    Google Scholar 

  • Nardin, T.R., Hein, F.J., Gorsline, D.S., and Edwards, B.R., 1979b: A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems, in Doyle, L.J., and Pilkey, O.H., eds., The geology of continental slopes. Soc. Econ. Paleont. Mineral. Spec. Publ. 27, p. 61–73.

    Google Scholar 

  • Nelson, C.H., 1967: Sediments of Crater Lake, Oregon; Geol. Soc. Am. Bull., v. 79, p. 833–848.

    Article  Google Scholar 

  • Nelson, C.H., 1983: Modern submarine fans and debris aprons: An up-date of the first half century, in S.J. Boardman, ed., Revolution in the earth sciences. Advances in the past half-century; Kendall/Hunt, Dubuque, Iowa, p. 148–166.

    Google Scholar 

  • Nelson, C.H., 1990: Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain, in C.H. Nelson and A. Maldonado, eds., The Ebro continental margin, northwestern Mediterranean Sea. Mar. Geol., v. 95, in press.

    Google Scholar 

  • Nelson, C.H., and Kulm, L.D., 1973: Submarine fans and channels, in G.V. Middleton and A.W. Bouma, eds., Turbidites and deep water sedimentation; Soc. Econ. Paleont. Mineral. Pacific Section Short Course, Anaheim, CA, p. 39–78.

    Google Scholar 

  • Nelson, C.H., and Maldonado, A., 1988: Factors controlling depositional patterns of Ebro turbidite systems, Mediterranean Sea; Am. Assoc. Petrol. Geol. Bull., v. 72, p. 698–716.

    Google Scholar 

  • Nelson, C.H., and Nilsen, T.H., 1984: Modern and ancient deep sea-fan sedimentation; Soc. Econ. Paleont. Mineral. Short Course 14, 404 p.

    Google Scholar 

  • Nelson, C.H., Maldonado, A., Coumes, F., Got, H., and Monaco, A., 1983/ 1984: The Ebro deep sea-fan system; Geo-Marine Lett., v. 3, p. 125–132.

    Article  Google Scholar 

  • Nelson, C.H., Bacon, C.R., and Robinson, S.W., 1986a: The caldera floor sedimentary history of Crater Lake, Oregon (Abstract); 12th Int. Assoc. Sedimentologists Congr., Canberra, Australia, p. 226.

    Google Scholar 

  • Nelson, C.H., Meyer, A.W., Thor, D., and Larsen, M.L., 1986b: Crater Lake, Oregon: A restricted basin with base-of-slope aprons of nonchannelized turbi-dites; Geology, v. 14, p. 238–241.

    Google Scholar 

  • Nelson, C.H., Carlson, P.R., and Bacon, C.R., 1988: The Mount Mazama climactic eruption (- 6900 yr B.P.) and resulting convulsive sedimentation on the Crater Lake caldera floor, continent, and ocean basin, in H.E. Cliftoned., Sedimentologic consequences of convulsive geologic events: Geol. Soc. Am. Spec. Paper 229, p. 37–57

    Google Scholar 

  • Newhall, C.G., Paull, C.K., Bradbury, J.P., Higuera-Gundy, A., Poppe, L.J., Self, S., Bonar Sharpless, N., and Ziagos, J., 1987: Recent geologic history of Lake Atitlân, a caldera lake in western Guatemala; J. Volcanol. Geotherm. Res., v. 33, p. 81–107.

    Article  Google Scholar 

  • Normark, W.R., and Gutmacher, C.E., 1988: Sur submarine slide, Monterey fan, central California; Sedimentology, v. 35, p. 629–647.

    Article  Google Scholar 

  • Normark, W.R., and Hess, G.R., 1980: Quaternary growth patterns of California submarine fans, in M.E. Field, A.H. Bouma, I.P. Colburn, R.G. Douglas, and J.C. Ingle, eds., Quaternary depositional environments of the Pacific coast; Pacific Coast Paleogeography Symposium 4, Soc. Econ. Paleont. Mineral. Pacific Section, Los Angeles, CA, p. 201–210.

    Google Scholar 

  • Normark, W.R., and Piper, D.J.W., 1972: Sediments and growth pattern of Navy deep-sea fan, San Clemente basin, California Borderland; J. Geol., v. 80, p. 198–223.

    Article  Google Scholar 

  • O’Connell, S., Ryan, W.B.F., and Normark, W.R., 1987: Modes of development of slope canyons and their relation to channel and levee features on the Ebro sediment apron, offshore northeastern Spain; Mar. Petrol. Geol., v. 4, p. 308319.

    Google Scholar 

  • Otis, R.M., Smith, R.B., and Wold, R.J., 1977: Geophysical survey of Yellowstone Lake, Wyoming; J. Geophys. Res., v. 82, p. 3705–3717.

    Article  Google Scholar 

  • Poppe, L.J., Paull, C.K., Newhall, C.G., Bradbury, J.P., and Ziagos, J. 1985: A geophysical and geological study of Laguna de Ayarza, a Guatemalan caldera lake; J. Volcanol. Geotherm. Res., v. 25, p. 125–144.

    Article  Google Scholar 

  • Reading, H.G., 1986: African Rift tectonics and sedimentation, an introduction, in L.E. Frostick, R.W. Renaut, I. Reid, and J.J. Tiercelin, eds., Sedimentation in the African Rifts; Geol. Soc. London Spec. Publ. 25, p. 3–7.

    Google Scholar 

  • Ricci Lucchi, F., and Valmori, E., 1980: Basin-wide turbidites in a Miocene, over-supplied deep-sea plain: A geometrical analysis; Sedimentology, v. 27, p. 241–270.

    Google Scholar 

  • Rosendahl, B.R., Reynolds, D.J., Lorber, P.M., Burgess, C.F., McGill, J., Scott, D., Lambiase, J.J., and Derksen, Si., 1986: Structural expressions of rifting: Lessons from Lake Tanganyika, Africa, in L.E. Frostick, R.W. Renaut, I. Reid, and J.J. Tiercelin, eds., Sedimentation in the African Rifts; Geol. Soc. London Spec. Publ. 25, p. 29–43.

    Google Scholar 

  • Schlager, W., and Chermak, A., 1979: Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas, in L.J. Doyle and O.H. Pilkey, eds., Geology of continental slopes; Soc. Econ. Paleont. Mineral. Spec. Publ. 27, p. 193–208.

    Google Scholar 

  • Scott, D.L., 1988, Modern processes in a continental rift lake: An interpretation of 28 kHz seismic profiles from Lake Malawi, East Africa: M.S. Thesis, Duke University, Durham, NC, 82 p.

    Google Scholar 

  • Tiercelin, J.J., 1988: Hydrothermal activity, metalliferous sediments and hydrocarbons examples of North Tanganyika and Kivu troughs, East African Rift (Abstract); Int. Assoc. Sedimentologists International Workshop, Lacustrine facies models in rift systems and related natural resources, Inst. Jaime Aimera, C.S.I.C., Univ. Barcelona, Barcelona, Spain, p. 17.

    Google Scholar 

  • Thornburg, T.M., and Kulm, L.D., 1987: Sedimentation in the Chile trench: Depositional morphologies, lithofacies, and stratigraphy; Geol. Soc. Am. Bull., v. 98, p. 33–52.

    Article  Google Scholar 

  • Walker, J.R., and Massingill, J.V., 1970: Slump features on the Mississippi Fan, northeastern Gulf of Mexico; Geol. Soc. Am. Bull., v. 81, p. 3101–3108.

    Article  Google Scholar 

  • Weimer, P., 1987: Seismic stratigraphy of three areas of lower slope failure, Torok formation, Northern Alaska; in I.L. Tailleur and P. Weimer, eds., Alaskan North Slope Geology: Soc. Econ. Paleont. Mineral. Pacific Section, v. 50, p. 481–496.

    Google Scholar 

  • Weimer, P., 1989: Sequence stratigraphy of the Mississippi Fan (Plio-Pleistocene), Gulf of Mexico; Geo-Marine Lett., v. 9, p. 185–272.

    Article  Google Scholar 

  • Williams, H., 1956: Crater Lake National Park and vicinity, Oreg.; U.S. Geol.Surv. topographic map, scale 1: 62, 500.

    Google Scholar 

  • Zhang, Zhensheng: The structural evolution and depositional systems of faulted depressions in the North China Basin, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, C.H., Maldonado, A., Barber, J.H., Alonso, B. (1991). Modern Sand-Rich and Mud-Rich Siliciclastic Aprons: Alternative Base-of-Slope Turbidite Systems to Submarine Fans. In: Weimer, P., Link, M.H. (eds) Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Frontiers in Sedimentary Geology. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8276-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8276-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8278-2

  • Online ISBN: 978-1-4684-8276-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics