Skip to main content

Quantum Theory of Inverse Bremsstrahlung Absorption and Pair Production

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

The inverse Bremsstrahlung process is believed to play an important role in the heating of plasma electrons by laser radiation. In this process, an electron absorbs energy from the laser beam during a collision with a nucleus. From a classical viewpoint, the electron oscillates in the electric field of the laser beam. During a collision with a nucleus, the electron is knocked out of phase with the electric field, and the oscillatory energy of the electron is converted to random thermal energy. From a quantum viewpoint, the electron can gain energy only in units of ħω, where ω is the frequency of the laser radiation, and it is not clear that the classical theory is valid. In this paper, we discuss the quantum theory of inverse Bremsstrahlung absorption, and compare the quantum results to the classical results.

Presented at the Third Workshop on “Laser Interaction and Related Plasma Phenomena” held at Rensselaer Polytechnic Institute, Troy, New York, August 13–17, 1973.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T. W. Johnston and J. M. Dawson, Phys. Fluids 16, 722 (1973).

    Article  ADS  Google Scholar 

  3. V. P. Silin, Zh. Eksp. Teor. Fiz. 47, 2254 (1964)

    Google Scholar 

  4. V. P. Silin, Sov. Phys.JETP 20, 1510 (1965).

    Google Scholar 

  5. V. P. Silin, Zh. Eksp. Teor. Fiz, 38, 1771 (1960) [Sov. Phys.JETP 11, 1277 (1960)].

    Google Scholar 

  6. Equation (5) is derived from Eqs. (5,1) and (5.5) of Ref. 2 with dl = R/2 and S2 = Ir; see Ref. 5.

    Google Scholar 

  7. J. F. Seely, Dissertation, University of Tennessee (1973).

    Google Scholar 

  8. H. A. Bethe, Los Alamos Scientific Laboratory Informal Report No. LA-5031-M5 (1972).

    Google Scholar 

  9. F. V. Bunkin and M. V. Fedorov, Zh. Eksp. Teor. Fiz. 49, 1215 (1965).

    Google Scholar 

  10. F. V. Bunkin and M. V. Fedorov, Sov. Phys.-JETP 22, 844 (1966).

    ADS  Google Scholar 

  11. H. Brehme, Phys. Ref. 3, 837 (1971).

    ADS  Google Scholar 

  12. J. F. Seely and E. G. Harris, Phys. Rev. 7, 1064 (1973).

    Article  ADS  Google Scholar 

  13. E. G. Harris, A Pedestrian Approach to Quantum Field Theory (John Wiley and Sons, New York, 1972 ).

    Google Scholar 

  14. E. G. Harris in Advances in Plasma Physics (John Wiley and Sons, New York, 1969 ), Vol. III, p. 157.

    Google Scholar 

  15. R. K. Osborn, Phys. Rev. 20, 1660 (1972).

    Google Scholar 

  16. S. Rand, Phys. Rev. 136, 231 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  17. T. P. Hughes and M. B. Nicholson-Florence, J. Phys. l, 588 (1968).

    ADS  Google Scholar 

  18. D. M. Volkov, Z. Physik 94, 250 (1935).

    ADS  MATH  Google Scholar 

  19. P. J. Redmond, J. Math. Phys. 6, 1163 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. L. S. Brown and T. W. Kibble, Phys. Rev. 133, 705 (1964).

    Article  ADS  Google Scholar 

  21. V. P. Yakovlev, Zh. Eksp. Teor. Fiz. 49, 318 (1965)

    Google Scholar 

  22. V. P. Yakovlev, Sov. Phys.-JETP 22, 223 (1966).

    ADS  Google Scholar 

  23. F. V. Bunkin and A. E. Kazakov, Dokl. Akad. Nauk SSSR 193, 1274 (1970)

    Google Scholar 

  24. F. V. Bunkin and A. E. Kazakov, Sov. Phys.-Dokl. 15, 758 (1971).

    ADS  Google Scholar 

  25. J. W. Shearer, J. Garrison, J. Wong, and J. E. Swain, Phys. Rev. A (to be published).

    Google Scholar 

  26. H. Hora, Nature Phys. Sc. 243, 34 (1973).

    ADS  Google Scholar 

  27. Ya. B. Zel’Dovich, Zh. Eksp. Teor. Fiz. 51, 1492 (1966)

    Google Scholar 

  28. Ya. B. Zel’Dovich, Sov. Phys.-JETP 24, 1006 (1967).

    Google Scholar 

  29. J. H. Eberly in Progress in Optics (John Wiley and Sons, New York, 1969), vol. VII, p, 359.

    Google Scholar 

  30. V, P. Oleinik, Zh. Eksp. Teor. Fiz, 61, 27 (1971)

    MathSciNet  Google Scholar 

  31. V, P. Oleinik, Sov. Phys.JETP 34, 14 (1972).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Seely, J.F. (1974). Quantum Theory of Inverse Bremsstrahlung Absorption and Pair Production. In: Schwarz, H.J., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8416-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8416-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8418-2

  • Online ISBN: 978-1-4684-8416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics