Skip to main content

Assimilatory Force and Regulation of Photosynthetic Carbon Reduction in Leaves

  • Chapter
Techniques and New Developments in Photosynthesis Research

Part of the book series: NATO ASI Series ((NSSA,volume 168))

Summary

The assimilatory force Fa is the product of the phosphorylation potential ATP/(ADP Pi) and the redox ratio NADPH/NADP. The light-dependent change in the free energy of Fa is the driving force of carbon assimilation. It is small compared to energy turnover in assimilation and not directly related to carbon flux. Deviations from proportionality between force and flux is explained by changes in the resistance offered to carbon flux. Enzyme modulation by the chloroplast thioredoxin system and by effectors and changes in substrate or metabolite concentrations and in activation energy modify resistance to carbon flux. As a result, low phosphorylation potentials and low ratios of NADPH to NADP simultaneously satisfy substrate requirements of thylakoid reactions and energy requirements of carbon assimilation over a wide range of fluxes. In illuminated leaves, high Fa values are indicative of flux limitations. However, even when stomata are closed under water stress so that access of CO2 is retricted, Fa values are not excessive in the presence of air levels of oxygen. Under these conditions, control of photosystem II activity and NADPH and ATP consumption via photorespiratory CO2 turnover prevent over-reduction of the electron transport chain, a condition leading to photoinactivation. Burdens of flux control are shared by different photosynthetic reactions. The extent of control exerted by a particular reaction changes as flux conditions change. The complex relationship between control coefficient, AG and activation energy of a reaction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Aflalo, C. , and Shavit, N., 1984, Limited access of nucleotides to the active site of ATP synthetase during photophosphorylation. In: Advances in photosynthesis research, vol. 2: 559, Sybesma, C., ed., Martinus Nijhoff/Dr. Junk Publishers, The Hague.

    Google Scholar 

  • Ashton, A.R., 1982, A role for ribulose-1,5-bisphosphate carboxylase as a metabolite buffer. FEBS letters 145, 1–7.

    Article  CAS  Google Scholar 

  • Bassham, J.A., and Krause, G.H., 1969, Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim. Biophys. Acta, 189: 207.

    Article  PubMed  CAS  Google Scholar 

  • Borst, P., 1963: Hydrogen transport and transport metabolites. In: Funktionelle and morphologische Organisation der Zelle, pp 137, P. Karlson, ed., Springer, Berlin.

    Google Scholar 

  • Buchanan, B., 1980, Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31: 341.

    Article  CAS  Google Scholar 

  • Demmig, B., Winter, K., Krüger, A. , and Czygan, F.-C., 1987, Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Demmig, B., and Winter, K., 1988a, Characterization of three components of non-photochemical fluorescence quenching and their response to photoinhibition. Austr.J.Plant Physiol. 15: 163.

    Article  Google Scholar 

  • Demmig, B., and Winter, K., 1988b, Light response of CO2 assimilation, reduction state of Q and radiationless energy dissipation energy dissipation in intact leaves. Austr.J.Plant Physiol. 15: 151.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., and Heber, U., 1984, Rate-limiting factors in leaf photosynthesis. 1. Carbon fluxes in the Calvin cycle, Biochim. Biophys. Acta 767: 432.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., Neimanis, S., and Heber, U., 1984, Rate-limiting factors in leaf photosynthesis. 2. Electron transport. Biochim. Biophys. Acta 767: 444.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., and Heber, U., 1986, Light and CO2 limitation of photosynthesis and states of the reactions regenerating ribulose-1,5-bisphosphate or reducing 3-phosphoglycerate, Biochim. Biophys. Acta 848: 392.

    Article  CAS  Google Scholar 

  • Heber, U., 1957, Zur Frage der Lokalisation von löslichen Zuckern in der Pflanzenzelle. Ber. Deutsche Bot. Ges. 70:371.

    CAS  Google Scholar 

  • Heber, U., and Santarius, K. A., 1965, Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis, Biochim. Biophys. Acta 109: 390.

    Article  PubMed  CAS  Google Scholar 

  • Heber, U., and Heldt, H.W., 1981, The chloroplast envelope: structure, function and role in leaf metabolism. Ann. Rev. Plant Physiol 32: 139.

    Article  CAS  Google Scholar 

  • Heber, U., Neimanis, S., Dietz, K.-J., and Viil, J., 1986, Assimilatory power as driving force in photosynthesis, Biochim. Biophys. Acta 852:144.

    Article  CAS  Google Scholar 

  • Heber, U., Neimanis, S., Dietz, K.-J., and Viil, J., 1987, Assimilatory force in relation to photosynthetic flux. In: Progress in Photosynthesis Research., vol. III: 293, Biggins, J., ed., Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Heber, U., Neimanis, S., Setliková, E., and Schreiber, U., 1988a, Why is photorespiration a necessity for leaf survival under water stress? In: Proceedings of the International Congress of Plant Physiol., New Delhi, in the press.

    Google Scholar 

  • Heber, U., Neimanis, S., and Dietz, K.-J., 1988b, Fractional control of photosynthesis by the Qb protein, the cytochrome f/b6 complex and other components of the photosynthetic apparatus. Planta 173: 267.

    Article  CAS  Google Scholar 

  • Heinrich, R. , and Rapaport, T.A., 1974, A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 107.

    Article  PubMed  Google Scholar 

  • Heldt, H.W., and Sauer, 1971, The inner membrane of the chloroplast envelope as the site of specific transport. Biochim. Biophys. Acta 234: 83.

    Article  PubMed  CAS  Google Scholar 

  • Huchzermeyer, B., 1988, Phosphate binding to isolated chloroplast coupling factor (CF1). Z. Naturforschg. 43c: 213.

    Google Scholar 

  • Kacser, H., and Burns, J.A., 1973, Symp. Soc. Exp. Biol. 27: 65.

    PubMed  CAS  Google Scholar 

  • Kacser, H., and Burns, J. A., 1979, Molecular democracy: who shares the control. Biochem. Soc. Transact. 7: 1149.

    CAS  Google Scholar 

  • Kaiser, G., Martinoia, E. and Wiemken, A., 1982, Rapid appearance of photosynthetic products in the vacuoles isolated from barley mesophyll protoplasts by a new fast method. Z. Pflanzenphysiologie 107: 103.

    CAS  Google Scholar 

  • Krause, G.H., and Behrend, U., 1986, pH-dependent chlorophyll fluorescence guenching indicates a mechanism of protection against photoinhibition of chloroplasts. FEBS Letters 200: 298.

    Article  CAS  Google Scholar 

  • Laisk, A., Oja, V., Kiirats, O., Raschke, K. , and Heber, U., 1988, The state of the photosynthetic apparatus in leaves as analyzed by rapid gas exchange and optical methods: the pH of the chloroplast stroma, activation and deactivation of enzymes and force resistance relationships in the Calvin cycle. Planta, submitted.

    Google Scholar 

  • Leegood, R. C., and Furbank, R. T., 1986, Stimulation of photosynthesis by 2% oxygen at low temperatures is restored by phosphate, Planta 168: 84.

    Article  CAS  Google Scholar 

  • Leegood, R. C., Kobayashi, Y., Neimanis, S., Walker, D. A., and Heber, U., 1982, Co-operative activation of chloroplast fructose-1,6-bisphosphatase by reductant, pH and substrate. Biochim. Biophys. Acta 682: 168.

    Article  CAS  Google Scholar 

  • Leegood, R. C., Walker, D. A., and Foyer, C. H., 1985, Regulation of the Benson-Calvin cycle. In: “Photosynthetic Mechanisms and the Environment”, Barber, J., and Baker, N.R., eds., Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Oja, V., Laisk, A., and Heber, U., 1986, Light induced alkalization of the chloroplast stroma in vivo as estimated from the CO2 capacity of intact sunflower leaves. Biochim. Biophys. Acta 849: 355.

    Article  CAS  Google Scholar 

  • Powles, S.B., 1984, Photoinhibition of photosynthesis induced by visible light. Ann. Rev. Plant Physiol. 35

    Google Scholar 

  • Sage, R., and Sharkey, T. D. , 1987, The effect of temperature on the occurrance of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol. 84: 658.

    Article  PubMed  CAS  Google Scholar 

  • Sivak, M.N., and Walker, D.A., 1986, Photoynthesis in vivo can be limited by phosphate supply. New Phytologist 102: 499.

    Article  CAS  Google Scholar 

  • Stitt, M., 1986, Limitation of photosynthesis by carbon assimilation. 1. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2 . Plant Physiol. 81: 1115.

    Article  PubMed  CAS  Google Scholar 

  • Stocking, C.R., 1959, Chloroplast isolation in nonaqueous media. Plant Physiol. 34: 56.

    Article  PubMed  CAS  Google Scholar 

  • Takahama, U., Shimizu-Takahama, M., and Heber, U., 1981, The redox state of the NADP system in illuminated chloroplasts. Biochim. Biophys. Acta 637: 530.

    Article  CAS  Google Scholar 

  • Tran-Anh, T., and Rumberg, B., 1987, Coupling mechanism between proton transport and ATP synthesis in chloroplasts. In: Progress in photosynthesis research, Vol 3: pp.185, Biggins, J., ed., Martinus Nijhoff Publishers, Dortrecht, Boston.

    Google Scholar 

  • Weis, E., and Berry, J., 1987, Quantum efficiency of photosystem II in relation to “energy”-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 849:198–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Dietz, KJ., Heber, U. (1989). Assimilatory Force and Regulation of Photosynthetic Carbon Reduction in Leaves. In: Barber, J., Malkin, R. (eds) Techniques and New Developments in Photosynthesis Research. NATO ASI Series, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8571-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8571-4_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8573-8

  • Online ISBN: 978-1-4684-8571-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics