Skip to main content

Control of Sterol Biosynthesis and its Importance to Developmental Regulation and Evolution

  • Chapter
Biochemistry of the Mevalonic Acid Pathway to Terpenoids

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 24))

Abstract

Sterols are virtually ubiquitous constituents of all living systems at some point in their life history.1,2 In a few organisms they are replaced by pentacyclic triterpenoids.3–5 Although sterols may differ structurally from each other they share similar amphiphathic properties which make them suitable as membrane components. The principal function for sterols and sterol-like molecules is thought to be a non-metabolic one as an architectural component of membranes; while at the same time at sites not yet clear, there appears to be additional developmentally regulated functions for sterols to control the cell cycle.6–10 The multiple sterol functions appear to be species specific, but which sterol is essential in sterol-controlled ontogenetic events6 is not always predictable with the current data base. This chapter will be concerned with approaches developed in this laboratory to interrupt sterol biosynthesis and to assess the functional importance of sterols in the regulation of growth and reproduction of plants and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NES, W.R. 1974. Role of sterols in membranes. Lipids 9: 596–612.

    Article  PubMed  CAS  Google Scholar 

  2. NES, W.D., E. HEFTMANN. 1981. A comparison of triterpenoids with steroids as membrane components. J. Nat Prod. 44: 377–400.

    Article  CAS  Google Scholar 

  3. ROHMER, M., P. BOUVIER, G. OURISSON. 1979. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl. Acad. Sci. USA. 76: 847–851.

    Article  PubMed  CAS  Google Scholar 

  4. NES, W.D., R.C. HEUPEL, P.H. LE. 1984. A comparison of sterol biosynthesis in fungi and tracheophytes and its phylogenetic and functional implications. In: Structure, function and metablism of plant lipids. (P.A. Siegenthaler and W. Eichenberger, eds.), Elsevier Publ., Amsterdam, pp. 207–216.

    Google Scholar 

  5. PORALLA, K., E. KANNENBERG. 1987. Hopanoids: sterol equivalents in bacteria. ACS. Symp. Ser. 325: 239–251.

    Article  CAS  Google Scholar 

  6. NES, W.D. 1987. Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes. ACS Symp. Ser. 325: 304–328.

    Article  CAS  Google Scholar 

  7. SIPERSTEIN, M.D. 1984. Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J. Lipid Res. 25: 1462–1468.

    PubMed  CAS  Google Scholar 

  8. HAUGHAN, P.A., J.R. LENTON, L.J. GOAD. 1987. Paclobutrazol inhibition of sterol biosynthesis in a cell suspension culture and evidence of an essential role for 24-ethyl sterol in plant cell division. Biochem. Biophys. Res. Commun. 146: 510–516.

    Article  PubMed  CAS  Google Scholar 

  9. GROSSMAN, K., E.W. WEILER, J. JUNG. 1985. Effects of different sterols on the inhibition of cell culture growth caused by the growth retardant tetracyclacis. Planta 164: 370–375.

    Article  Google Scholar 

  10. DAHL, D., H. BIEMANN, J. DAHL. 1987. A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Proc. Natl. Acad. Sci. USA. 84: 4012–4016.

    Article  PubMed  CAS  Google Scholar 

  11. NES, W.R. 1977. The biochemistry of plant sterols. Adv. Lipid Res. 15: 233–324.

    CAS  Google Scholar 

  12. GOAD, L.J. 1983. How is sterol synthesis regulated in higher plants? Biochem. Soc. Trans. 11: 548–552.

    PubMed  CAS  Google Scholar 

  13. GRAY, J.C. 1987. Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25–91.

    Article  CAS  Google Scholar 

  14. BACH, T.J., H.K. LICHTENTHALER. 1987. Plant growth regulation by mevinolin and other sterol biosynthesis inhibitors. ACS Symp. Ser. 325: 109–139.

    Article  CAS  Google Scholar 

  15. NES, W.R., M.L. MCKEAN. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, p.690.

    Google Scholar 

  16. BLOCH, K.E. 1983. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14: 47–92.

    Article  PubMed  CAS  Google Scholar 

  17. OURISSON, G., M. ROHMER, K. PORALLA. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann. Rev. Microbiol. 41: 301–333.

    Article  CAS  Google Scholar 

  18. SANDOR, T., S. SONEA. 1975. Are steroids universal biomolecules? Biochem. Soc. Trans. 3: 1157–1159.

    CAS  Google Scholar 

  19. CALVIN, M. 1969. Chemical evolution. Clarendon Press, Oxford, p.200.

    Google Scholar 

  20. VAN TAMELEN, E.E. 1968. Bioorganic chemistry: sterols and cyclic terpene terminal epoxides. Acc. Chem. Res. 1: 111–120.

    Article  Google Scholar 

  21. JOHNSON, W.S. 1976. Biomimetic polyene cyclizations: a review. Bioorgan. Chem. 5: 51–98.

    Article  CAS  Google Scholar 

  22. RUZICKA, L. 1959. History of the iosprene rule. Proc. Chem Soc. 341–360.

    Google Scholar 

  23. KERWIN, J.L., N.D. DUDDLES. 1989 Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi. J. Bacteriol. 171: 3831–3839.

    PubMed  CAS  Google Scholar 

  24. NES, W.D., P.K. HANNERS, E.J. PARISH. 1986. Control of fungal sterol C-24 transalkylation: importance to developmental regulation. Biochem. Biophys. Res. Commmun. 139: 410–415.

    Article  PubMed  CAS  Google Scholar 

  25. NES, W.D., G.A. SAUNDERS, E. HEFTMANN. 1982. Role of steroids and triterpenoids in the growth and reproduction of Phytophthora cactorum. Lipids 17: 178–183.

    Article  CAS  Google Scholar 

  26. NES, W.D., P.H. LE. 1988. Regulation of sterol biosynthesis in Saprolegnia ferax by 25-azacholesterol. Pest. Biochem. Physiol. 30: 87–94.

    Article  CAS  Google Scholar 

  27. NES, W.R., B.C. SEKULA, W.D. NES, J.H. ADLER. 1978. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253: 6218–6225.

    PubMed  CAS  Google Scholar 

  28. NES, W.D., S. XU, W.F. HADDON. 1989. Evidence for similarities and differences in the biosynthesis of fungal sterols. Steroids 53: 533–558.

    Article  PubMed  CAS  Google Scholar 

  29. NES, W.D., S. XU, E.J. PARISH. 1989. Metabolism of 24(R,S),25-epiminolanosterol to 25-aminolanosterol and lanosterol by Gibberella fujikuroi. Arch. Biochem. Biophys. 272: 323–331.

    Article  PubMed  CAS  Google Scholar 

  30. CARTER, P.W.., I.M. HEILBRON, B. LYTHGOE. 1939. The lipochromes and sterols of the algal classes. Proc. Royal Soc. Lond. B. 128: 82–109.

    Google Scholar 

  31. LEVIN, E.Y., K. BLOCH. 1964. Absence of sterols in blue-green algae. Nature Lond. 202: 90–91.

    Article  PubMed  CAS  Google Scholar 

  32. DESOUZA, N.J., W.R. NES. 1968. Sterols: isolation from a blue-green alga. Science 162: 363.

    Article  CAS  Google Scholar 

  33. REITZ, R.C., J.G. HAMILTON. 1968. The isolation and identification of two sterols from two species of blue-green algae. Comp. Biochem. Physiol. 25: 401–416.

    Article  PubMed  CAS  Google Scholar 

  34. KAHLHASE, M., P. POHL. 1988. Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria). Phytochemistry 27: 1735–1740.

    Article  Google Scholar 

  35. BERGMANN, W. 1953. The plant sterols. Ann. Rev. Plant Physiol. 4: 383–426.

    Article  Google Scholar 

  36. KOHL, W., A. GLOE, H. REICHENBACH. 1983. Steroids from the nyxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.

    CAS  Google Scholar 

  37. BIRD, C.W., J.M. LYNCH, F.J. PIRT, W.W. REID, C.J.W. BROOKS, B.S. MIDDLEDITCH. 1971. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature Lond. 230: 473.

    Article  PubMed  CAS  Google Scholar 

  38. PATT, T.E., R.S. HANSON. 1978. Intracytoplasmic membrane, phospholipid and sterol content of Methylbacterium organophilum cells grown under different conditions. J. Bacteriol. 134: 36–643.

    Google Scholar 

  39. NES, W.D., P.H. LE, L.R. BERG, G.W. PATTERSON, J.L. KERWIN. 1986. A comparison of cycloartenol and lanosterol biosynthesis and metabolism by the Oomycetes. Experientia 42: 556–558.

    Article  CAS  Google Scholar 

  40. XU, S., W.D. NES. 1988. Biosynthesis of cholesterol in the yeast mutant erg6. Biochem. Biophys. Res. Commun. 155: 509–517.

    Google Scholar 

  41. HEUPEL, R.C., Y. SAUVAIRE, P.H. LE, E.J. PARISH, W.D. NES. 1986. Sterol composition and biosynthesis in sorghum: importance to developmental regulation. Lipids 21: 69–75.

    Article  CAS  Google Scholar 

  42. POPJAK, G., A. MEENAN. 1987. Regulation of 3-hydroxyl-3-methyl glutaryl coenzyme A reductase: search for the enzyme repressor derived from mevalonate. Proc. R. Soc. Lond. B. 231: 391–414.

    Article  PubMed  CAS  Google Scholar 

  43. NES, W.R., W.D. NES. 1980. Lipids in evolution. Plenum Press, New York, 240 pp.

    Google Scholar 

  44. VAN TAMELEN, E.E., 1982. Bioorganic characterization and mechanism of the 2,3-oxidosqualene→Lanosterol conversion. J. Amer. Chem. Soc. 104: 6480–6481.

    Article  Google Scholar 

  45. CORNFORTH, J.W. 1968. Olefin alkylation in biosynthesis. Angew. Chem. 7: 903–964.

    Article  Google Scholar 

  46. JOHNSON, W.S., S.J. TELFER, S. CHENG, U. SCHUBERT. 1987. Cation-stabilization auxiliaries: a new concept in biomimetic polyene cyclization. J. Amer. Chem. Soc. 109: 2517–2518.

    Article  CAS  Google Scholar 

  47. GOULD, S.J. 1977. Ontogeny and Phylogeny. Belknap Press, Cambridge, 501 pp.

    Google Scholar 

  48. DOBZHANSHY, T., F.J. AYALA, G.L. STEBBINS, J.W. VALENTINE. 1977. Evolution. Freeman and Co., San Francisco, 572 pp.

    Google Scholar 

  49. GOAD, L.J., T.W. GOODWIN. 1973. The biosynthesis of plant sterols. Prog. Phytochemistry 1: 113–198.

    Google Scholar 

  50. CAVALIER-SMITH, T. 1987. The origin of eukaryote and archaebacterial cells. Ann. New York Acad. Sci. 503: 17–54.

    Article  CAS  Google Scholar 

  51. BURDEN, R.S., D.T. COOKE, G.A. CARTER. 1989. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry 28: 1791–1804.

    Article  CAS  Google Scholar 

  52. PATTERSON, G.W. 1987. Sterol synthesis and distribution and algal phylogeny. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd and W.D. Nes eds.), Plenum Press, New York, pp. 631–636.

    Google Scholar 

  53. KOKKE, W.C.M., J.N SCHOOLERY, W. FENICAL, C. DJERASSI. 1984. Biosynthetic studies of marine lipids. 4. Mechanism of side chain alkylation in (E)-24-propylidenecholesterol by a chrysophyte alga. J. Org. Chem. 49: 3742–3752.

    Article  CAS  Google Scholar 

  54. AKIHISA, T., T. TAMURA, T. MATSUMOTO, W.D.M.C. KOKKE, T. YOKOTA. 1989 Isolation of acetylenic sterols from a higher plant. Further evidence that marine sterols are not unique. J. Org. Chem. 54: 606–610.

    Article  CAS  Google Scholar 

  55. NES, W.D., P.H. LE. 1989. Evidence for separate intermediates in the biosynthesis of 24β-methyl sterol end products in Gibberella fujikuroi. Biochem. Biophys. Acta (in press).

    Google Scholar 

  56. PINTO, W.J., W.R. NES. 1983. Stereochemical specificity for sterols in Saccharomyces cerevisiae. J. Biol. Chem. 258: 4472–4476.

    PubMed  CAS  Google Scholar 

  57. NES, W.D., R.C. HEUPEL. 1986. Physiological requirement for biosynthesis of multiple 24β-methylsterols in Gibberella fujikuroi. Arch. Biochem. Biophys. 244: 211–217.

    Article  PubMed  CAS  Google Scholar 

  58. NES, W.R. 1971. Regulation of the sequencing in sterol biosynthesis. Lipids 6: 219–224.

    Article  PubMed  CAS  Google Scholar 

  59. BAISTED, D.F., E. CAPSTACK, W.R. NES. 1962. The biosynthesis of β-amyrin and β-sitosterol in germinating seeds of Pisum sativum. Biochemistry 1: 537–541.

    Article  PubMed  CAS  Google Scholar 

  60. BAISTED, D.J. 1971. Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem J. 124: 375–383.

    PubMed  CAS  Google Scholar 

  61. HEUPEL, R.C., W.D. NES, J.A. VERBEKE. 1987. Developmental regulation of sterol and pentacyclic triterpene biosynthesis and composition: A correlation with sorghum floral initiation. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp. 53–56.

    Google Scholar 

  62. SAUVAIRE, Y., B. TAL, R.C. HEUPEL, R. ENGLAND, P.K. HANNERS, W.D. NES, J.B. MUDD. 1987. The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp. 107–109.

    Google Scholar 

  63. GARG, V.K., W.R. NES. 1985. Changes in A5- and A7-sterols during germination and seedling development of Cucurbita maxima. Lipids 20: 876–883.

    Article  CAS  Google Scholar 

  64. AKIHISA, T., S. THAKUR, F.U. FOSENSTEIN, T. MATSUMOTO. 1985. Sterols of cucurbitaceae: the configuration of 24-alkyl-Δ5-, Δ7- and Δ8-sterols. Lipids 21: 39–47.

    Article  Google Scholar 

  65. KARUNEN, P., K. HAKALA, S. HEINONEN. 1984. Occurrence of esterified triterpenoids alcohols in the leaves of Pilosella officinarm. Physiol. Plant. 61: 243–250.

    Article  CAS  Google Scholar 

  66. SEKULA, B.C., W.R. NES. 1980. The identification of cholesterol and other steroids in Euphorbia pulcherimma. Phytochemistry 19: 1509–1512.

    CAS  Google Scholar 

  67. NODA, M., M. TANAKA, Y. SETO, T. AIBA, C. OKU. 1988. Occurrence of cholesterol as a major sterol component in leaf surface lipids. Lipids 23: 439–444.

    Article  CAS  Google Scholar 

  68. NES, W.D., T.J. BACH. 1985. Evidence for a mevalonate shunt in a tracheophyte. Proc R. Soc. Lond. B. 225: 425–444.

    Article  CAS  Google Scholar 

  69. RODRIQUEZ, R.J., C. LOW, C.D.K. BOTTEMA, L.W. PARKS. 1985. Multiple functions for sterols in Saccharomyces cerevisiae. Biochem. Biophys. Acta 837: 336–343.

    Google Scholar 

  70. NES, W.R., J.H. ADLER, J.T. BILLHEIMER, K.A. ERICKSON, J. JOSEPH, J.R. LANDREY, R. MARCACCIO-JOSEPH, K.S. RITTER, R.L. CONNER. 1982. A comparison of the biological properties of androst-5-en-3β-ols and 21-isopentyl-cholesterol with those of cholesterol. Lipids 17: 257–262.

    Article  PubMed  CAS  Google Scholar 

  71. NES, W.R. 1987. Multiple roles for plant sterols. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp 3–9.

    Google Scholar 

  72. NES, W.R. 1987. Structure-function relationships for sterols in Saccharomyces cerevislae. ACS Sump. Ser. 325: 254–267.

    Google Scholar 

  73. HAIGH, G., H.J. FöRSTER, K. BIEMANN, N.H. TATTRIE, J.R. COLVIN. 1973. Induction and orientation of bacterial cellulose microfibrils by a novel terpenoid from Acetobacter xylinum. Biochem. J. 135: 145–149.

    PubMed  CAS  Google Scholar 

  74. CLEJAN, S., R. BITTMAN, S. ROTTEM. 1981. Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membrane of Mycoplasma capricolum. Biochemistry 20: 2200–2204.

    Article  PubMed  CAS  Google Scholar 

  75. KRIEF, A. J., SCHAUDER, E. GUITTET, C.G. DUPEHOAT, J. LALLEMAND. 1987. About the mechanism of sterol biosunthesis. J. Amer. Chem Soc. 109: 7910–7911.

    Article  CAS  Google Scholar 

  76. VAN TAMELEN, E.E., J.R. HEYS. 1975. Enzymic epoxidation of squalene variants. J. Amer. Chem. Soc. 97: 1252–1253.

    Article  Google Scholar 

  77. NES, W.D., A.E. STAFORD. 1984. Side-chain structural requirements for sterol-induced regulation of Phytophthora cactorum physiology. Lipids. 19: 544–549.

    Article  PubMed  CAS  Google Scholar 

  78. NES, W.D., A.E. STAFFORD. 1983. Evidence for metabolic and functional discrimination of sterol by Phytophthora cactorum. Proc. Natl. Acac. Sci. USA. 80: 3227–3231.

    Article  CAS  Google Scholar 

  79. NES, W.D., G.W. PATTERSON, G.A. BEAN. 1980. Effect of steric and nuclear changes in steroids and triterpenoids on sexual reproduction of Phytophthora cactorum. Plant Physiol. 66: 1008–1011.

    Article  PubMed  CAS  Google Scholar 

  80. NES, W.D., P.K. HANNERS, G.A. BEAN, G.W. PATTERSON. 1982. Inhibition of growth and sitosterol-induced sexual reproduction in Phytophthora cactorum by steroidal alkaloids. Phytopathology 72: 447–450.

    Article  CAS  Google Scholar 

  81. NES, W.D., W.R. NES. 1983. Disassociation of oogonia formation from oospore production by sterols with varying side chain lengths. Experientia 39-: 276–278.

    Google Scholar 

  82. NES, W.D., 1984. Control of fungal physiology by polycyclic isopentenoids and its phylogenetic implications. In: Isopentenoids in plants: biochemiostry and function. (W.D. Nes, G. Fuller, L. Tsai, eds.), Dekker, New York, pp 267–290.

    Google Scholar 

  83. RUJANAVECH, C., D.F. SILBERT. 1986. LM cell growth and membrane lipid adaptations to sterol structure. J. Biol Chem. 261: 7196–7203.

    PubMed  CAS  Google Scholar 

  84. DUAX, W.L., J.F. GRIFFIN, C. CHEER. 1989. Steroid conformational analyses based on X-ray crystal structure determination. In: Analysis of sterols and other biologically significant steroids, Academic Press, New York, pp. 203–221.

    Google Scholar 

  85. NES, W.D., R.Y. WONG, M. BENSON, J.R. LANDREY, W.R. NES. 1984. Rotational isomerism about the 17(20)-bond of steroids and euphoids as shown by the crystal structures of euphol and tirucallol. Proc. Natl. Acad. Sci. USA. 81: 5896–5900.

    Article  PubMed  CAS  Google Scholar 

  86. PARISH, E.J., W.D. NES. 1988. Synthesis of new eqiminoisopenoids. Synth. Commun. 18: 221–226.

    Article  CAS  Google Scholar 

  87. TAL, B., W.D. NES. 1987. Regulation of sterol biosynthesis: Importance of the C-24 alkyl group to growth of sunflower suspension cultures. Plant Physiol. (suppl.) 83: 161.

    Google Scholar 

  88. HAUGHN, P.A., J.R. LENTON, L.J. GOAD. 1988. Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochemistry 27: 2491–2500.

    Article  Google Scholar 

  89. POPJAK, G., A. MEENAN, W.D. NES. 1987. Effects of 2,3-iminosqualene on cultured cells. Proc. R. Soc. Lond. B. 232: 273–387.

    Article  PubMed  CAS  Google Scholar 

  90. POPJAK, G., A. MEENAN, E.J. PARISH, W.D. NES. 1989. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparinol in cultured rat hepatoma cells. J. Biol. Chem. 264: 6230–6238.

    PubMed  CAS  Google Scholar 

  91. GABER, R.F., D.H. COPPLE, B.K. KENNEDY, M. VIDAL, M. BARD. 1989. Erg6 is essential for normal membrane function in Saccharomyces cerevisiae but is not required for the formation of the cell cycle. Mol. Cell. Biol. 9: (in press).

    Google Scholar 

  92. MCCAMMON, M.T., M. HARTMANN, C.D.K. BOTTEMA, L.W. PARKS. 1984. Sterol methylation in Saccharomyces cerevisiae. J. Bacteriol. 157: 475–483.

    PubMed  CAS  Google Scholar 

  93. NES, W.R., I.C. DHANUKA. 1988. Inhibition of sterol synthesis by Δ5-sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450. J. Biol. Chem. 263: 11844–11850.

    PubMed  CAS  Google Scholar 

  94. TATON, M., P. BENVENISTE, A. RAHIER. 1986. N-[C1,5,8]-trimethyldecyl]-4a, 10-dimethyl-8-aZA-trans-decal-3β-ol, a novel potent inhibitor of 2,3-oxidosqualene cycloartenol and lanosterol cyclases. Biochem. Biophys. Res. Commun. 138: 764–770.

    Article  PubMed  CAS  Google Scholar 

  95. BENVENISTE, P., M. BLADOCHE, M.F. COSTET, A. EHRHADT. 1984. Use of inhibitors of biosynthesis to study plasmalemma structure and function. In: Membranes and compartmentalization in the regulation of plant functions. (A. Boudet, G. Alibert, G. Marigo, P. Lea, eds.), Ann. Proc. Phytochem. Soc, Europe, 24: 283–300.

    Google Scholar 

  96. BENVENISTE, P., M. BLADOCHE, M.F. COSTET, A. EHRHADT. 1984. Ann. Proc. Phytochem. Soc, Europe, 24: 283–300.

    Google Scholar 

  97. NES, W.D., M. BENSON, R.E. LUNDIN, P.H. LE. 1988. Conformational analysis of 9β, 19-cyclopropyl sterols: Detection of the pseudoplanar conformer by nuclear Overhauser effects and its functional implications. Proc. Natl. Acad. Sci., USA. 85: 5759–5763.

    Article  PubMed  CAS  Google Scholar 

  98. DUAX, W.L., Z. WAWRZAK, J.F. GRIFFIN, C. CHEER. 1988. Sterol conformation and molecular properties. In: Biology of cholesterol. (P.Y. Yeagle, ed.), CRC. Press, Boca Raton, pp 1–18.

    Google Scholar 

  99. PROUDLOCK, J.W., L.W. WHEELDON, D.J. JOLLOW, A.W. LINNANE. 1968. Role of sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta 152: 434–437.

    PubMed  CAS  Google Scholar 

  100. BUTTKE, T.M., K. BLOCH. 1981. Utilization and metabloism of methyl-sterol derivatives in the yeast mutant GL7. Biochemistry 20: 3267–3272.

    Article  PubMed  CAS  Google Scholar 

  101. NES, W.D., R.A. NORTON, E.J. PARISH, A. MEENAN, G. POPJAK. 1989. Concerning the role of 24,25-dihydrolanosterol and lanosterol in sterol biosynthesis by cultured cells. Steroids 53: 461–475.

    Article  PubMed  CAS  Google Scholar 

  102. XU, S., R.A. NORTON, F.G. CRUMLEY, W.D. NES. 1988. Comparison of the chromatographic properties of sterols, select additional steroids and triterpenoids: gravity flow colum liquid chromatography, thin-layer chromatography and high-performance liquid chromatography. J. Chromatogr. 4 52: 377–398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Nes, W.D. (1990). Control of Sterol Biosynthesis and its Importance to Developmental Regulation and Evolution. In: Towers, G.H.N., Stafford, H.A. (eds) Biochemistry of the Mevalonic Acid Pathway to Terpenoids. Recent Advances in Phytochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8789-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8789-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8791-6

  • Online ISBN: 978-1-4684-8789-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics