Skip to main content

Quantum-Mechanical Approaches to the Study of Enzymic Transition States and Reaction Paths

  • Chapter
Transition States of Biochemical Processes

Abstract

Over the last 30 years, transition-state theory has provided a suitable theoretical framework for interpreting a wide range of chemical(1) and biological(2) processes. Nevertheless, it is only within the last few years, due in large measure to the approximately parallel and related development of high-speed digital computers and practical quantum-mechanical procedures for studying the geometric and electronic structure of molecules, that the full potential of transition-state theory is beginning to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of rate processes, Mcgraw-Hillm, New York(1941).

    Google Scholar 

  2. F. H. Johnson, H. Eyring, and J. Polissar, The Kinetic Basis of Molecular Biology, Wiley, New York (1954).

    Google Scholar 

  3. R. D. Levine, Quantum Mechanics of Molecular Rate Processes, Clarendon Press, Oxford (1969).

    Google Scholar 

  4. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  5. K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York (1969).

    Google Scholar 

  6. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York (1974).

    Google Scholar 

  7. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1950).

    Google Scholar 

  8. K. Fukui, A formulation of the reaction coordinate, J. Phys. Chem. 74, 4161–4163 (1970).

    Article  CAS  Google Scholar 

  9. M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York (1975).

    Book  Google Scholar 

  10. H. Metiu, J. Ross, R. Silbey, and T. F. George, On symmetry properties of reaction coordinates, J. Chem. Phys. 61, 3200–3209 (1974).

    Article  CAS  Google Scholar 

  11. R. Fuchs and E. S. Lewis, in Techniques of Chemistry (E. S. Lewis, ed.), Vol. 6, Part 1, Chap. 4, Wiley, New York (1974).

    Google Scholar 

  12. H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York (1966).

    Google Scholar 

  13. D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7, 195–201 (1974).

    Article  CAS  Google Scholar 

  14. H. Eyring and E. M. Eyring, Modem Chemical Kinetics, Van Nostrand Reinhold, New York (1963).

    Google Scholar 

  15. K. J. Laidler, Chemical Kinetics, McGraw-Hill, New York (1965).

    Google Scholar 

  16. J. O. Hirschfelder, Coordinates which diagonalize the kinetic energy of relative motion, Int. J. Quantum Chem. 3S, 17–31 (1969).

    Article  Google Scholar 

  17. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, New York (1954).

    Google Scholar 

  18. J. W. McIver and A. Komornicki, Structure of transition states of organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, J. Am. Chem. Soc. 94, 2625–2633 (1972).

    Article  CAS  Google Scholar 

  19. M. J. S. Dewar and S. Kirschner, MINDO/2 study of antiaromatic (“forbidden”) electrocyclic processes, J. Am. Chem. Soc. 93, 4291–4292 (1971).

    Article  CAS  Google Scholar 

  20. M. J. S. Dewar and S. Kirschner, Classical and non-classical potential surfaces. The signifi- cance of antiaromaticity in transition states, J. Am. Chem. Soc. 93, 4292–4294 (1971).

    Article  CAS  Google Scholar 

  21. M. J. S. Dewar and S. Kirschner, Nature of transition states in “forbidden” electrocyclic reactions, J. Am. Chem. Soc. 96, 5244–5246 (1974).

    Article  CAS  Google Scholar 

  22. W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969).

    Google Scholar 

  23. M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, Wiley, New York (1971).

    Google Scholar 

  24. I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill, New York (1958).

    Google Scholar 

  25. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  26. F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Addison-Wesley, Reading, Mass. (1969).

    Google Scholar 

  27. R. E. Stanton and J. W. McIver, Group theoretical selection rules for the transition states of chemical reactions, J. Am. Chem. Soc. 97, 3632–3646 (1975).

    Article  CAS  Google Scholar 

  28. J. N. Murrell and K. J. Laidler, Symmetries of activated complexes, Trans. Faraday Soc. 64, 371–377 (1968).

    Article  CAS  Google Scholar 

  29. M. J. S. Dewar and S. Kirschner, MINDO/3 study of the thermal conversion of cyclobutene to 1,3-butadiene, J. Am. Chem. Soc. 96, 6809–6810 (1974).

    Article  CAS  Google Scholar 

  30. D. Poppinger, On the calculation of transition states, J. Am. Chem. Soc. 35, 550–554 (1975).

    CAS  Google Scholar 

  31. H. Eyring and S. H. Lin, in: Physical Chemistry: An Advanced Treatise (H. Eyring, ed.), Vol. 6, Part A, Chap. 3, Academic Press, New York (1975).

    Google Scholar 

  32. G. G. Balint-Kurti, in: Molecular Scattering ( K. P. Lawley, ed.), pp. 137–183, Wiley, London (1975).

    Google Scholar 

  33. P. O’D. Offenhartz, Atomic and Molecular Orbital Theory, McGraw-Hill, New York (1969).

    Google Scholar 

  34. H. F. Schaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Mass. (1972).

    Google Scholar 

  35. A. C. Wahl, Recent progress beyond the Hartree-Fock method for diatomic molecules: The method of optimized valence configurations, Mt. J. Quantum Chem. ls, 123–152 (1967).

    Google Scholar 

  36. D. B. Cook, Ab Initio Valence Calculations in ChemistryWiley, New York (1974).

    Google Scholar 

  37. S. Huzinaga, Gaussian-type functions for polyatomic systems. I, J. Chem. Phys. 42, 12931302 (1965).

    Google Scholar 

  38. E. Clementi and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys. 1, 223–244 (1966).

    Google Scholar 

  39. W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51. 2657–2664 (1969).

    Article  CAS  Google Scholar 

  40. J. L. Whitten, Gaussian lobe function expansions of Hartree-Fock solutions for first-row atoms and ethylene, J. Chem. Phys. 44, 359–364 (1966).

    Article  CAS  Google Scholar 

  41. G. M. Maggiora and R. E. Christoffersen, Ah Initio calculations on large molecules using molecular fragments. Generalization and characteristics of floating spherical Gaussian basis sets, J. Am. Chem. Soc. 98, 8325–8332 (1976).

    Google Scholar 

  42. R. E. Christoffersen, D. Spangler, G. G. Hall, and G. M. Maggiora, Ab initio calculations on large molecules using molecular fragments. Evaluation and extension of initial procedures, J. Am. Chem. Soc. 95, 8526–8536 (1973).

    Article  CAS  Google Scholar 

  43. A. Dedieu and A. Veillard, Ab initio calculation of the activation energy for an SN2 reaction, Chem. Phys. Lett. 5, 328–330 (1970).

    Article  CAS  Google Scholar 

  44. P. Baybutt, The molecular orbital description of SN2 reactions at silicon centers, Mol. Phys. 29, 389–403 (1975).

    Article  CAS  Google Scholar 

  45. G. Alagona, E. Scrocco, and J. Tomasi, An ab initio study of the amidic bond cleavage by OH-in formamide, J. Am. Chem. Soc. 97, 6976–6983 (1975).

    CAS  Google Scholar 

  46. H. Bürgi, J. D. Dunitz, J. M. Lehn, and G. Wipff, Stereóchemistry of reaction paths at carbonyl centers, Tetrahedron 30, 1563–1572 (1974).

    Article  Google Scholar 

  47. G. M. Maggiora and R. L. Schowen, in: A Survey of Bioorganic Chemistry (E. E. van Tamelen, ed.), Vol. I, pp. 173–229, Wiley, New York (1977).

    Google Scholar 

  48. L. C. Snyder and H. Basch, Molecular Wavefunctions and Properties, Wiley, New York (1972).

    Google Scholar 

  49. K. Jug, On the development of semi-empirical methods in the MO formalism, Theor. Chim. Acta 14, 91–135 (1969).

    CAS  Google Scholar 

  50. R. Hoffman, An extended Hückel theory. I. Hydrocarbons, J. Chem. Phys. 39, 1397–1412 (1963).

    Article  Google Scholar 

  51. L. C. Cusachs and J. W. Reynolds, Selection of molecular matrix elements from atomic data, J. Chem. Phys. 43, S160 - S164 (1965).

    Article  CAS  Google Scholar 

  52. R. Rein, N. Fukuda, H. Win, G. A. Clarke, and F. E. Harris, Iterated extended Hückel theory, J. Chem. Phys. 45, 4743–4744 (1966).

    Article  CAS  Google Scholar 

  53. L. C. Allen, in: Sigma Molecular Orbital Theory ( O. Sinanoglu and K. B. Wiberg, eds.), pp. 227–248, Yale University Press, New Haven, Conn. (1970).

    Google Scholar 

  54. J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).

    Google Scholar 

  55. J. N. Murrell and J. A. Harget, Semi-Empirical Self-Consistent-Field Molecular Orbital Theory of Molecules, Wiley, New York (1972).

    Google Scholar 

  56. J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent molecular orbital theory. I. Invariant procedures, J. Chem. Phys. 43, 5129–5135 (1965).

    Google Scholar 

  57. J. A. Pople, D. L. Beveridge, and P. A. Dobosh, Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap, J. Chem. Phys. 47, 2026–2033 (1967).

    Article  CAS  Google Scholar 

  58. T. A. Halgren and W. N. Lipscomb, Self-consistent-field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap, J. Chem. Phys. 58, 1569–1591 (1973).

    Article  CAS  Google Scholar 

  59. R.C. Bingham, M. J. S. Dewar, and D. H. Lo, Ground states of molecules. XXVI. MIN DO/3 calculations for hydrocarbons, for CHON species, and for compounds containing third row elements, J. Am. Chem. Soc. 97, 1294–1318 (1975).

    Google Scholar 

  60. S. Diner, J. P. Malrieu, and P. Claverie, Localized bond orbitals and the correlation problem. I. The perturbation calculation of the ground state energy, Theor. Chim. Acta 13, 1–17 (1969).

    CAS  Google Scholar 

  61. F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1968).

    Google Scholar 

  62. D. Perahia and A. Pullman, Success of the PCILO method and failure of the CNDO/2 method for predicting conformations in some conjugated systems, Chem. Phys. Lett. 19, 73–75 (1973).

    Article  CAS  Google Scholar 

  63. J. Langlet and H. van der Meer, Calculation of molecular geometry with the PCILO method, Theor. Chim. Acta 21, 410–412 (1971).

    Google Scholar 

  64. R. E. Dickerson and I. Geis, The Structure and Action of Proteins, Harper & Row, New York (1969).

    Google Scholar 

  65. R. Henderson and J. H. Wang, Catalytic Configurations, Ann. Rev. Biophys. Bioeng. 1, 1–26 (1972).

    Article  CAS  Google Scholar 

  66. T. H. Fife, Physical organic model systems and the problem of enzymatic catalysis, Adv. Phys. Org. Chem. 11, 1–122 (1975).

    Article  CAS  Google Scholar 

  67. Y. Iwakura, K. Uno, F. Toda, S. Onozuka, K. Hattori, and M. L. Bender, The stereochemically correct catalytic site on cyclodextrin resulting in a better enzyme model, J. Am. Chem. Soc. 97, 4432–4434 (1975).

    Article  PubMed  CAS  Google Scholar 

  68. W. A. Van Hook, in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), pp. 1–89, Van Nostrand Reinhold, New York (1970).

    Google Scholar 

  69. E. K. Thornton and E. R. Thornton, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds.), pp. 213–285, Van Nostrand Reinhold, New York (1970).

    Google Scholar 

  70. P. E. Phillipson, On the possible importance of relaxation processes in enzyme catalysis, J. Mol. Biol. 31, 319–321 (1968).

    Google Scholar 

  71. M. V. Vol’kenshtein, Enzyme Physics, Plenum Press, New York (1969).

    Google Scholar 

  72. B. R. Gelin and M. Karplus, Side chain torsional potentials and motion of amino acids in proteins: Bovine pancreatic trypsin inhibitor, Proc. Nat. Acad. Sci. USA 72, 2002–2006 (1975).

    Article  PubMed  CAS  Google Scholar 

  73. A. J. Hopfinger, Conformational Properties of Macromolecules, Academic Press, New York (1973).

    Google Scholar 

  74. S. Scheiner, D. A. Kleier, and W. N. Lipscomb, Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases, Proc. Nat. Acad. Sci. USA 72, 2606–2610 (1975).

    Article  PubMed  CAS  Google Scholar 

  75. S. Scheiner and W. N. Lipscomb, Molecular orbital studies of enzyme activity: Catalytic mechanism of serine proteinases, Proc. Nat. Acad. Sci. USA 73, 432–436 (1976).

    Article  PubMed  CAS  Google Scholar 

  76. L. Polgar and B. Asbóth, On the stereochemistry of catalysis by serine proteases, J. Theor. Biol. 46, 543–558 (1974).

    Article  PubMed  CAS  Google Scholar 

  77. Papers on the structure and function of proteins at the three-dimensional level, Cold Spring Harbor Symp. Quant. Biol. 36, 63 - I50 (1972).

    Article  Google Scholar 

  78. D. M. Blow, J. J. Birktoft, and B. S. Hartley, Role of a buried acid group in the mechanism of action of chymotrypsin, Nature (London) 221, 337–340 (1969).

    Article  CAS  Google Scholar 

  79. A. Ruhlmann, D. Kukla, P. Schwager, K. Bartels, and R. Huber, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor, J. Mol. Biol. 77, 417–436 (1973).

    Article  PubMed  CAS  Google Scholar 

  80. M. L. Bender and J. V. Kilheffer, Chymotrypsins, CRC Crit. Rev. Biochem. 1, 149–199 (1973).

    Article  PubMed  CAS  Google Scholar 

  81. H. Umeyama, A. Imamura, C. Nagata, and M. Hanano, A molecular orbital study on the enzymic reaction mechanism of a-chymotrypsin, J. Theor. Biol. 41, 485–502 (1973).

    Article  PubMed  CAS  Google Scholar 

  82. G. H. Loew and D. D. Thomas, Molecular orbital calculations of the catalytic effect of lysozyme, J. Theor. Biol. 36, 89–104 (1972).

    Article  PubMed  CAS  Google Scholar 

  83. T. C. Bruice, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. I1, pp. 217–279, Academic Press, New York (1970).

    Google Scholar 

  84. D. E. Koshland, K. W. Carraway, G. A. Dafforn, J. D. Gass, and D. R. Storm, The importance of orientation factors in enzymatic reactions, Cold Spring Harbor Symp. Quant. Biol. 36, 13–20 (1971).

    Article  CAS  Google Scholar 

  85. T. C. Bruice, Views on approximation, orbital steering, and enzymatic model reactions, Cold Spring Harbor Symp. Quant. Biol. 36, 21–27 (1971).

    Article  CAS  Google Scholar 

  86. D. M. Chipman and N. Sharon, Mechanism of lysozyme action, Science 165, 464–465 (1969).

    Article  Google Scholar 

  87. C. Delisi and D. M. Crothers, The contribution of proximity and orientation to catalytic reaction rates, Biopolymers 12, 1689–1704 (1973).

    Article  CAS  Google Scholar 

  88. W. P. Jencks and M. I. Page, “Orbital steering,” entropy, and rate accelerations, Biochem. Biophys. Res. Commun. 57, 887–892 (1974).

    Article  PubMed  CAS  Google Scholar 

  89. A. R. Fersht, Catalysis, binding, and enzyme-substrate complementarity, Proc. Roy. Soc. London Ser. B 187, 397–407 (1974).

    Article  CAS  Google Scholar 

  90. P. K. Warme and H. A. Scheraga, Refinement of the X-ray structure of lysozyme by complete energy minimization, Biochemistry 13, 757–767 (1974).

    Article  PubMed  CAS  Google Scholar 

  91. M. Levitt, Energy refinement of hen egg-white lysozyme, J. Mol. Biol. 82, 393–420 (1974).

    Article  PubMed  CAS  Google Scholar 

  92. B. S. Hudson, in: Neutron, X-Ray, and Laser Spectroscopy in Biology and Chemistry ( S. Chen and S. Yip, eds.), pp. 119–144, Academic Press, New York (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maggiora, G.M., Christoffersen, R.E. (1978). Quantum-Mechanical Approaches to the Study of Enzymic Transition States and Reaction Paths. In: Gandour, R.D., Schowen, R.L. (eds) Transition States of Biochemical Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9978-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9978-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9980-3

  • Online ISBN: 978-1-4684-9978-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics