Skip to main content

Cryopreservation of Insect Germplasm: Cells, Tissues and Organisms

  • Chapter
Insects at Low Temperature

Abstract

The concept of cyropreserving insect germplasm is not a new idea; entomologists and others using insects and/or cells in research, in education, or for commerce often successfully employ cold temperature to lengthen the shelf-life of their material. Why should we be concerned with furthering the science of insect cryopreservation? The answer is basically simple. There is a significant and widespread need to extend the applicability of long-term cold storage to a wider range of insect species, life stages, cells, and tissues. Practical applications for cryopreservation are abundant among the many disciplines utilizing insects or their cells. In most cases when whole insects are currently subjected to cold temperature for the purpose of storage, no special cryopreservative treatments are applied and often only those cold-tolerant species that possess an overwintering life stage are used. Furthermore, cryopreservation of insect cell and tissue cultures has evolved, with little modification, from the methods used to store vertebrate cells at low temperature. To date, the primary concern has been on gaining survival after freezing and little regard has been given to optimizing other parameters that may affect poststorage yield, viability, and differentiation of the insect cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allis, C. D., E. M. Underwood, J. H. Caulton, and A. P. Mahowald. 1979. Pole cells of Drosophila melanogaster in culture. Dev. Biol. 69:451–465.

    Google Scholar 

  • Anderson, D. T. 1966. The comparative embryology of the Diptera. Annu. Rev. Entomol. 1:23–45.

    Google Scholar 

  • Anderson, D. T. 1972. The development of hemi- and holometabolous insects. In Developmental Systems: Insects, eds. S. J. Counce and C. H. Waddington, pp. 96–241. Academic Press, New York.

    Google Scholar 

  • Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter, and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 24:324–331.

    Google Scholar 

  • Asahina, E. 1955. Freezing and supercooling as a method of storage of a mobile animal, a preliminary experiment. Zool. Mag. 64:280–285.

    Google Scholar 

  • Asahina, E. 1959. Prefreezing as a method enabling animals to survive freezing at a super-low temperature. Nature, 184:1003–1004.

    Google Scholar 

  • Asahina, E. 1966. Freezing and frost resistance in insects. In Cryobiology. ed. H. T. Meryman, pp. 451–485. Academic Press, London.

    Google Scholar 

  • Asahina, E. 1969. Frost resistance in insects. In Advances in Insect Physiology, eds. J. E. Treherne and V. B. Wigglesworth, pp. 1–49. Academic Press, New York.

    Google Scholar 

  • Asahina, E. and K. Tanno. 1964. A large amount of trehalose in a frost-resistant insect. Nature, 204:1222.

    Google Scholar 

  • Asahina, E. and K. Tanno. 1966. Freezing resistance in the diapausing pupa of the cecropia silkworm at liquid nitrogen temperature. Low Temp. Sci. 24:25–34.

    Google Scholar 

  • Baust, J. G. 1973. Mechanisms of cryoprotection in freezing tolerant animal systems. Cryobiol. 10:197–205.

    Google Scholar 

  • Baust, J. G. 1982. Environmental triggers to cold-hardening. Comp. Biochem. Physiol. 73:563–570.

    Google Scholar 

  • Baust, J. G., R. E. Lee, and R. A. Ring. 1982. The physiology and biochemistry of low temperature tolerance in insects and other terrestrial arthropods. Cryo-Lett. 3:191–212.

    Google Scholar 

  • Baust, J. G. and R. E. Morrissey. 1975. Supercooling phenomenon and water content independence in the overwintering beetle, Coleomegilla maculata. J. Insect Physiol. 21:1751–1754.

    Google Scholar 

  • Blum, M. S., S. Glowska, and S. Taber. 1962. Chemistry of the drone honey bee reproductive system. II. Carbohydrates in the reproductive organs and semen. Ann. Entmol. Soc. Am. 55:135–139.

    Google Scholar 

  • Boller, E. F. 1979. Behavioral aspects of quality in insectary production. In Genetics in Relation to Insect Management, eds. M. A. Hoy and J. J. McKelvey, pp. 145–152. Rockefeller Foundation, New York.

    Google Scholar 

  • Bourne, W. M. 1986. Clinical and experimental aspects of corneal cryopreservation. Cryobiol. 23:566.

    Google Scholar 

  • Brown, B. L., S. C. Nagle, J. D. Lehman, and C.D. Rapp. 1971. Storage of Aedes aegypti and Aedes albopictus cells under liquid nitrogen. Cryobiol. 7:249–251.

    Google Scholar 

  • Bruschweiler, W. and W. Gehring. 1973. A method for freezing living ovaries of Drosophila melanogaster larvae and its application to the storage of mutant stocks. Experientia 29:14–135.

    Google Scholar 

  • Burcham, E. 1957. Artificial insemination of Aedes aegypti (L.) Can. Entomol. 89:494–495.

    Google Scholar 

  • Bush, G. L., R. W. Neck, and G. B. Kitto. 1976. Screwworm irradiation: inadvertent selection for non competitive ecotypes during mass rearing. Science 193:491–493.

    Google Scholar 

  • Callaini, G. and D. Marchini. 1989. Abnormal centrosomes in cold-treated Drosophila embryos. Exp. Cell Res. 184:367–374.

    Google Scholar 

  • Cannon, R. J. 1986. Diet and acclimation effects on the cold tolerance and survival of an Antartic springtail (Crytotopygus antarticus). Br. Antarct. Surv. Bull. 71: 19–30.

    Google Scholar 

  • Cannon, R. J., W. Block, and G. D. Collett. 1985. Loss of supercooling ability in Cryptopygus antarcticus (Collembola: Isotomidae) associated with water uptake. Cryo-Lett. 6:73–80.

    Google Scholar 

  • Chen, C.-P., D. L. Denlinger, and R. E. Lee. 1987. Cold-shock injury and rapid cold-hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.

    Google Scholar 

  • Clarke, C. A., F. M. Clarke, W. Cross, A. C. Gill, and H. L. Tasker. 1988. In vitro fertilization of insects: a review of the literature and a report on some current work in butterflies and moths. Amateur Entomol. Soc. Bull. 47:227–237.

    Google Scholar 

  • Colhoun, E. H. 1960. Acclimation to cold in insects. Entomol. Exp. Appl. 3:27–37.

    Google Scholar 

  • Craig, G. B. Jr. 1964. Applications of genetic technology to mosquito rearing. Bull. WHO 31:469–473.

    Google Scholar 

  • Crystal, M. M. 1967. Reproductive behavior of laboratory-reared screwworm flies. J. Med. Entomol. 4:443–450

    Google Scholar 

  • Czajka, M. C. and R. E. Lee. 1988. Cold shock and rapid cold hardening in Drosophila melanogaster. Cryobiol. 25:546.

    Google Scholar 

  • Davis, N. T. 1965. Studies of the reproductive physiology of Cimicidae (Hemiptera). II. Artificial insemination and the function of the seminal fluid. J. Insect Physiol. 11:355–366.

    Google Scholar 

  • Drooz, A. T. 1981. Subfreezing eggs of Lanbinapellucidaria (Lepidoptera: Geometidae) alters status as factitious host for Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae). Can J. Entomol. 113:775–776.

    Google Scholar 

  • Drooz, A. T. and J. D. Solomon. 1980. Rearing the egg parasite Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae) on eggs of Clostera inclusa (Lepidoptera: Notodontidae) kept below freezing. Can. Entomol. 112:739–740.

    Google Scholar 

  • Drooz, A. T. and M. L. Weems. 1982. Cooling eggs of Eutrapela clemataria (Lepidoptera: Geome-tridae) to minus 10 Celius forestalls decline in parasite production with Ooencyrtus ennomophagus (Hymenoptera: Encyrtidae). Can. Entomol. 114:1195–1196.

    Google Scholar 

  • Fahy, G. M., D. R. MacFarlane, C. A. Angeli, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiol. 21:407–426.

    Google Scholar 

  • Farrant, J. 1980. General observations on cell preservation. In Low Temperature Preservation in Medicine and Biology, eds. M. J. Ashwood-Smith and J. Farrant, pp. 1–18. Pitman, London.

    Google Scholar 

  • Farrant, J., S. C. Knight, and G. J. Morris. 1972. Use of different cooling rates during cooling to separate populations of human peripheral blood lymphocytes. Cryobiol. 9:516–525.

    Google Scholar 

  • Farrant, J., C. A. Walter, H. Lee, and L. E. McGann. 1977. The use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing. Cryobiol. 14:273 – 286.

    Google Scholar 

  • Florkin, M. and C. Jeuniaux. 1974. Hemolymph: composition. In The Physiology of lnsecta, Vol. 5, ed. M. Rockstein, pp. 256–307. Academic Press, New York.

    Google Scholar 

  • Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gennadiev, V. G. and E. D. Khlistovskii. 1980. Long-term cold storage of host eggs for reproduction of egg parasites of pest insects. Zh. Obshch. Biol. 41:314–319.

    Google Scholar 

  • Goll, P. H., J. Duncan, and N. Brown. 1989. Long-term storage of eggs of Simulium ornatum. Med. Vet. Entomol. 3:67–75.

    Google Scholar 

  • Goodwin, R. H. 1985. Growth of insect cells in serum-free media. In Techniques in the Life Sciences, Cell Biology, Techniques in Setting Up and Maintenance of Tissue and Cell Cultures, Vol. Cl, pp. 1–28.

    Google Scholar 

  • Elsevier. Harbo, J. R. 1977. Survival of honey bee spermatozoa in liquid nitrogen. Ann. Entomol. Soc. Am. 70:257–258.

    Google Scholar 

  • Harbo, J. R. 1979. Storage of honey bee spermatozoa at -196°C. J. Apic. Res. 18:57–63.

    Google Scholar 

  • Harbo, J. R. 1983. Survival of honey bee (Hymenoptera: Apidae) spermatozoa after two years storage in liquid nitrogen (196°C). Ann. Entomol. Soc. Am. 76:890–891.

    Google Scholar 

  • Heacox, A. E. and R. A. Leopold. 1984. Optimizing conditions for cryopreservation of an insect cell line. Cryobiol. 21:435–442.

    Google Scholar 

  • Heacox, A. E., R. A. Leopold, and J. D. Brammer. 1985. Survival of house fly embryos cooled in the presence of dimethylsulfoxide. Cryo-Lett. 6:305–312.

    Google Scholar 

  • Hill, D. L. 1945. Chemical removal of the chorion from Drosophila eggs. DIS. 19:62.

    Google Scholar 

  • Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperature of -270 to +102°C. Nature 188:336–337.

    Google Scholar 

  • Honadel, T. E. and G. J. Killian. 1988. Cryopreservation of murine embryos with trehalose and glycerol. Cryobiol. 25:331–337.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle Dendroides canadensis. J. Comp. Physiol. 151:233–240.

    Google Scholar 

  • Ivashchenko, L. A. 1977. The effect of oxygen and light on embryonic development and times of emergence of the larvae of blackflies (Diptera: Simuliidae). Med. Parazitol. Parasit. Bolezni. 46:37–41.

    Google Scholar 

  • James, E. R., A. Hodgson-Smith, B. Smith, M. Jackson-Gegan, D. McLean, J. T. Rawls, J. Renfro, A. R. Dobinson, I. Popiel, D. L. Minter, and P. J. Ham. 1989. The essential role of vitrification in cryopreservation of parasitic helminths. Cryobiol. 26:575.

    Google Scholar 

  • Jutte, N. H., P. Heyse, H. G. Jansen, G. J. Bruining, and G. H. Zeilmaker. 1987. Vitrification of human islet of Langerhans. Cryobiol. 24:403–411.

    Google Scholar 

  • Kaftanoglu, O. and Y.-S. Peng. 1984. Preservation of honeybee spermatozoa in liquid nitrogen. J. Apic. Res. 23:157–163.

    Google Scholar 

  • Kruuv, J., D. J. Glofcheski, and J. R. Lepock. 1988. Protective effect of L-glutamine against freeze- thaw damage in mammalian cells. Cryobiol. 25:121–130.

    Google Scholar 

  • Kuroda, Y. and Y. Takada. 1986. Freezing of Drosophila embryos after treatment with some chemicals. Annual Report, No. 36, National Institute of Genetics. Misima, Sizuoka-ken, Japan.

    Google Scholar 

  • Kusuda, J., T. Noguchi, K. Onimaru, and O. Yamashita. 1985. Maturation and hatching of eggs from silkworm ovaries preserved in liquid nitrogen. J. Insect Physiol. 31:963–967.

    Google Scholar 

  • Lea, C. H. and J. C. Hawke. 1952. The influence of water on the stability of lipovitellin and the effects of freezing and drying. Biochem. J. 52:105.

    Google Scholar 

  • Lee, R. E., R. A. Ring, and J. G. Baust. 1986. Low temperature tolerance in insects and other terrestrial arthropods: bibliography II. Cryo-Lett. 7:113–126.

    Google Scholar 

  • Lee, R. E., C.-P. Chen, and D. L. Denlinger. 1987. A rapid cold-hardening process in insects. Science 238:1415–1417.

    Google Scholar 

  • Lee, R. E. 1989. Insect cold hardiness: to freeze or not to freeze. Biosci. 39:308–312.

    Google Scholar 

  • Leibo, S. P., J. Farrant, P. Mazur, M. G. Hanna, and L. H. Smith. 1970. Effects of freezing on marrow stem cell suspensions: interactions of cooling and warming rates in the presence of PVP, sucrose or glycerol. Cryobiol. 6:315–332.

    Google Scholar 

  • Leibo, S. P., P. Mazur, and S. C. Jackowski. 1974. Factors affecting survival of mouse embryos during freezing and thawing. Exp. Cell Res. 89:79–88.

    Google Scholar 

  • Leibo, S. P., J. J. McGrath, and E. G. Cravalho. 1978. Microscopic observation of intracellular ice formation in mouse ova as function of cooling rate. Cryobiol. 15:257–271.

    Google Scholar 

  • Leopold, R. A. and R. R. Rojas. 1989. Invertebrate germplasm cryopreservation: potential, problems and prospects. In Annual Beltsville Symposium: Biotic Diversity and Germplasm Preservation; Global Imperatives, eds. L. Knutson and A. K. Stoner, pp. 355–377. Kluwer Academic Publishing, Boston.

    Google Scholar 

  • Levitt, J. 1980. Response of plants to environmental stress. Chilling, Freezing and High Temperature Stress, Vol. 1, pp. 23–64. Academic Press, New York.

    Google Scholar 

  • Limbourg, B. and M. Zalokar. 1973. Permeabilization of Drosophila eggs. Dev. Biol. 35:382–387.

    Google Scholar 

  • Lok, J. B., E. W. Cupp, M. J. Bernardo, and R. J. Pollack. 1983. Further studies on the development of Onchocerca spp. (Nematoda: Filarioidea) in nearctic black flies (Diptera: Simuliidae) Am. J. Trop. Med. Hyg. 32:1298–1305.

    Google Scholar 

  • Lopez-Farjul, C. and W. G. Hill. 1973. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. I. Laboratory populations. Genet. Res. 2:69–78.

    Google Scholar 

  • Lovelock, J. E. 1957. The denaturation of lipid protein complexes as a cause of damage by freezing. Proc. R. Soc. [B101] 147:427.

    Google Scholar 

  • Lozina-Lozinsky, L. K. 1962. Survival of insects at super-low temperatures. Dokl. Akad. Nauk SSSR 147:1247–1249.

    Google Scholar 

  • Lozina-Lozinsky, L. K. 1963. Resistance of some insects to the temperature of liquid helium (-269°C) under conditions of intracellular freezing in absence of antifreezes. Cytol. Akad. Nauk. 5:220–221.

    Google Scholar 

  • Lynch, D. V., S. P. Myers, S. P. Leibo, R. J. Maclntyre, and P. L. Steponkus. 1988. Permeabilization of Drosophila eggs using isopropanol and hexane. DIS 67:88–89.

    Google Scholar 

  • Lynch, D. V., T.-T. Lin, S. P. Myers, S. P. Leibo, R. J. Maclntyre, R. E. Pitt, and P. L. Steponkus. 1989. A two-step method for permeabilization of Drosophila eggs. Cryobiol. 26:445–452.

    Google Scholar 

  • MacKenzie, A. P. 1970. Death of frozen yeast in the course of slow warming. In The Frozen Cell, Ciba Foundation Symposium, eds. G. E. W. Wolstenholme and M. O’Connor, pp. 89–96. Churchill, London.

    Google Scholar 

  • Margaritis, L. H. 1985. Structure and physiology of the egg shell. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 154–230. Pergamon Press, Oxford.

    Google Scholar 

  • Massip, A. and P. Van der Zwalmen. 1982. In vitro survival of mouse embryos frozen in glycerol or glycerol-sucrose. Cryo-Lett. 3:326.

    Google Scholar 

  • Massip, A., P. Van der Zwalmen, and F. Leroy. 1984. Effect of stage of development on survival of mouse embryos frozen-thawed rapidly. Cryobiol. 21:574–577.

    Google Scholar 

  • Massip, A., P. Van der Zwalmen, B. Scheffen, and F. Ectors. 1986. Pregnancies following transfer of cattle embryos preserved by vitrification. Cryo-Lett. 7:270–273.

    Google Scholar 

  • Mazur, P. 1979. Slow freezing injury in mammalian cells. In Freezing of Mammalian Embryos, Ciba Foundation Symposium, No. 52, eds. K. Elliot and J. Whelan, pp. 19–42. Elsevier, Amsterdam.

    Google Scholar 

  • Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:125–142.

    Google Scholar 

  • Mazur, P., S. P. Leibo, J. Farrant, E. H. Chu, M. G. Hanna, and L. H. Smith. 1970. Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In The Frozen Cell, Ciba Foundation Symposium, pp. 69–88. Churchill, London.

    Google Scholar 

  • Mazur, P., U. Schneider, K. B. Jacobson, and A. P. Mahowald. 1988. Chilling injury in intact Drosophila eggs at various stages of embryonic development between 0 and -25°C in the absence of ice formation. Cryobiol. 25:544.

    Google Scholar 

  • McCall, J. W., J. Jun, and P. E. Thompson. 1975. Cryopreservation of infective larvae of Dipetalo- nema viteae. J. Parasitol. 61:340–342.

    Google Scholar 

  • McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller ASME Bed Vol. 5, HTD Vol. 90, pp. 57–66.

    Google Scholar 

  • Melnichenko, A.N. and Y.I. Vavilov. 1976. Many years keeping of drone semen when freezing in liquid nitrogen. Dokl. Vses. Akad. Nauk. 1:25–26.

    Google Scholar 

  • Meryman, H. T. 1974. Freezing injury and its prevention in living cells. Annu. Rev. Biophys. 3:341–363.

    Google Scholar 

  • Mitsuhashi, J. and K. Maramorosch. 1964. Leafhopper tissue culture: embryonic, nymphal and imaginai tissues from asceptic insects. Contrib. Boyce Thompson Inst. 22:435–460.

    Google Scholar 

  • Morrissey, R. E. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall flay, Eurosta solidaginis. J. Insect Physiol. 22:431–437.

    Google Scholar 

  • Moscona, A. 1950. Studies of the eggs of Bacillus libanicus (Orthoptera: Phasmidae). Moisture, dry material, and minerals in the developing egg. Quart. J. Mic. Sci. 91:195–203.

    Google Scholar 

  • Myers, S. P., D. V. Lynch, D. C. Knipple, S. P. Leibo, and P. L. Steponkus. 1988. Low-temperature sensitivity of Drosophila melanogaster embryos. Cryobiol. 25:544.

    Google Scholar 

  • Nishino, M., J. Bale, and J. G. Baust. 1988. The effects of cooling and warming rates on the cold-hardiness of Eurosta soldaginis (Fitch). Cryobiol. 25:519.

    Google Scholar 

  • Ohlsson, L. and H. A. Verhoef. 1988. Effects of diet composition on cold adaption in temperate Collembola. Comp. Biochem. Physiol. 91:475–479.

    Google Scholar 

  • Quinn, P. J. 1985. A lipid-phase separation model of low temperature damage to biological membranes. Cryobiol. 22:128–146.

    Google Scholar 

  • Rall, W. F., D. S. Reid, and C. Polge. 1984. Analysis of slow warming injury of mouse embryos by cryomicroscopical and physiochemical methods. Cryobiol. 21:106–121.

    Google Scholar 

  • Rall, W. F., M. J. Wood, and C. Kirby. 1985. In vivo development of mouse embryos cryopreserved by vitrification. Cryobiol. 22:603–605.

    Google Scholar 

  • Reaumur, R. A. F. 1736. Mémoires pour Servir a l’Histoire des Insectes, Vol. 2, pp. 141–147.L’Imprimerie Royale, Paris.

    Google Scholar 

  • Richerson, V. and E. A. Cameron. 1974. Differences in pheromone release and sexual behavior between laboratory-reared and wild gypsy moth adults. Environ. Entomol. 3:475–481.

    Google Scholar 

  • Ring, R. A 1980. Insects and their cells. In Low Temperature Preservation in Medicine and Biology, eds. M. J. Ashwood-Smith and J. Farrant, pp. 187–217. Pitman Medical, Tunbridge Wells, United Kingdom.

    Google Scholar 

  • Rojas, R. R., J. G. Riemann, and R. A. Leopold. 1989. Diapause and overwintering capabilities of the larva Homeosoma electellum (Lepidoptera: Pyralidae). Environ. Entomol. 18:552–557.

    Google Scholar 

  • Rudolph, A. S. and J. H. Crowe. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiol. 22:367–377.

    Google Scholar 

  • Rudolph, A. S., J. H. Crowe, and L. M. Crowe. 1986. Effect of three stabilizing agents—proline, betaine and trehalose—on membrane phospholipids. Arch. Biochem. Biophys. 245:134–143.

    Google Scholar 

  • Salt, R. W. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6:55–74.

    Google Scholar 

  • Salt, R. W. 1962. Resistance of Poikilothermic animals to cold. Brit. Med. Bull. 17:5–8.

    Google Scholar 

  • Salt, R. W. 1966. Relation between time of freezing and temperature in supercooled larvae of Cephus cinctus Nort. Can. J. Zool. 44:947–952.

    Google Scholar 

  • Salt, R. W. 1969. The survival of insects at low temperatures. Symp. Soc. Exp. Biol. 23:331–350.

    Google Scholar 

  • Sawada, Y. and M. C. Chang. 1964. Tolerance of honey bee sperm to deep freezing. J. Econ. Entomol. 57:891–892.

    Google Scholar 

  • Schiller, E. L., V. M. Turner, H. F. Marroquin, and R. D’Antonio. 1979. The cryopreservation and in vitro cultivation of larval Onchocerca volvulus. Am. J. Trop. Med. Hyg. 28:997–1009.

    Google Scholar 

  • Schmid, H., L. Sanchez, and R. Nothiger. 1984. Heterospecific combinations of germ cells and gonadal soma between Drosophila melanogaster, D. mauritiana, and D. anannssae. Roux’s Arch. Dev. Biol. 194:99–106.

    Google Scholar 

  • Shimada, K. 1977. Effects of cryoprotective additives on intracellular ice formation and survival in very rapidly cooled HeLa cells. Contrib. Inst. Low Temp. Sci. Cer. B. 19:49–69.

    Google Scholar 

  • Shinbo, H. 1989. Survival of larval ovaries and testes frozen in liquid nitrogen in the silkworm, Bombyx mori. Cryobiol. 26:389–396.

    Google Scholar 

  • Sømme, L. 1966. The effect of temperature, anoxia, or injection of various substances on haemolymph composition and supercooling in larvae of Anagasta kuehniella (Zell.). J. Insect Physiol. 12:1069–1083.

    Google Scholar 

  • Sømme, L. 1968. The effect of acclimation of glycerol injection on mortality and pupation in larvae of Ephestia kuehniella after exposures at low temperatures. Entomol. Exp. Appl. 11:143–148.

    Google Scholar 

  • Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–544.

    Google Scholar 

  • Sømme, L. and E.-M. Conradi-Larsen. 1977. Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29:118–126.

    Google Scholar 

  • Sonnenblick, B. P. 1950. The early embryology of Drosophila melanogaster. In The Biology of Drosophila, ed. M. Demerec, pp. 62–167. Wiley, New York.

    Google Scholar 

  • Sonobe H., A. Matsumoto, Y. Fukuzaki, and S. Fujiwara. 1979. Carbohydrate metabolism and restricted oxygen supply in the eggs of the silkworm, Bombyx mori. J. Insect Physiol. 25:381–388.

    Google Scholar 

  • Steponkus, P. L., S. P. Myers, D. V. Lynch, L. Gardner, V. Bronshteyn, S. P. Leibo, W. F. Rall, R. E. Pitts, T.-T. Lin and R. J. Maclntyre. 1990. Cryopreservation of Drosophila melanogaster embryos. Nature. 345:170–172.

    Google Scholar 

  • Strong-Gunderson, J. M. and R. A. Leopold. 1989. Cryobiology of Musca domestica: supercooling capacity and low-temperature tolerance. Environ. Entomol. 18:756–762.

    Google Scholar 

  • Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.

    Google Scholar 

  • Takahashi, T., A. Hirsh., E. F. Erbe, J. B. Bross, R. L. Steere, and R. J. Williams. 1986. Vitrification of human monocytes Cryobiol. 23:103–115.

    Google Scholar 

  • Takehara, I. and E. Asahina. 1960. Frost resistance and glycerol content in overwintering insects. Low Temp. Sci. Ser. B. 18:57–65.

    Google Scholar 

  • Tamura, T. and S. Sakate. 1985. Preservation of spermatozoa of the silkworm, Bombyx mori, by freezing. Sanshi Kenkyu. 134:123–128.

    Google Scholar 

  • Tanno, K. 1968. Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto. V. Freezing injury at the liquid nitrogen temperature. Low Temp. Sci. Ser. B. 26:76–84.

    Google Scholar 

  • Tanno, K. and E. Asahina. 1964. Frost resistance in the poplar sawfly, Trichiocampus populi Okamoto. Low Temp. Sci. Ser. B. 22:59–70.

    Google Scholar 

  • Trounson, A. 1986. Preservation of human eggs and embryos. Fértil. Steril. 46:1–12.

    Google Scholar 

  • Varma, M. G. R., M. Pudney, and C. J. Leake. 1979. Methods in mosquito cell culture. In Practical Tissue Culture Applications, eds. K. Maramorosch and H. Hirumi, pp. 331–350. Academic Press, New York.

    Google Scholar 

  • Villavaso, E. J. 1974. Artificial insemination of the boll weevil. Ann. Entomol. Soc. Am. 67:825–827.

    Google Scholar 

  • Wasylyck, J. M., A. T. Tice, and J. G. Baust. 1988. Partial glass formation: a novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.

    Google Scholar 

  • Withers, L. A. 1980. Preservation of germplasm. Int. Rev. Cytol. Suppl. 11:101–136.

    Google Scholar 

  • Womersley, C., P. S. Uster, A. S. Rudolph, and J. H. Crowe. 1986. Inhibition of dehydration-induced fusion between liposomal membranes by carbohydrates as measured by fluorescence energy transfer. Cryobiol. 23:245–255.

    Google Scholar 

  • Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarticus. J. Insect Physiol. 26:189–200.

    Google Scholar 

  • Young, D. G., A. Morales, R. D. Kreutzer, J. B. Alexander, A. Coredor, and R. B. Tesh. 1987. Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from cryopreserved Colombian sand flies (Diptera: Psychodidae). J. Med Entomol. 23:587–589.

    Google Scholar 

  • Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.

    Google Scholar 

  • Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Studies on freezing injuries in Eleodes blanchardi beetles. Comp. Biochem. Biophysiol. 63:199–202.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Leopold, R.A. (1991). Cryopreservation of Insect Germplasm: Cells, Tissues and Organisms. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics