Skip to main content

The Uses of Electron and Nuclear Magnetic Resonance and Nuclear Resonance Fluorescence In Studies of Glass

  • Conference paper
Introduction to Glass Science
  • 589 Accesses

Abstract

A legitimate question which one might ask about the title of this exposition is: what does “resonance” mean? In searching for an answer it is reasonable to consider the precedents for its usage. In Schiff’s book on Quantum Mechanics, the term is used in two ways: (1) The scattering of a particle by a potential is said to be “resonance scattering” when certain relations between the scattered particle and the potential from which it is scattered obtain.1 (2) A property of two classical oscillators which are in resonance (same unperturbed frequency) gives rise to two normal modes whose frequencies are lower and higher than the unperturbed frequency.1 This characteristic of interacting harmonic oscillations in quantum mechanics provides a basis for the theory of homopolar binding in molecules. Pauling and Wilson note that it arises whenever a system contains two or more identical particles. Another use of the term is found in the description of events which occur when an atom decays from an excited state and the emitted photon passes through a gas of the same kind of atoms being absorbed in the process and raising another atom to the same excited state as the one from which it was emitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. I. Schiff, Quantum Mechanics, pp. 112 & 292, McGraw Hill Book Co., New York, 1949.

    Google Scholar 

  2. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, p. 321, McGraw-Hill Book Co., New York, 1935.

    Google Scholar 

  3. P. Pringsheim, Fluorescence and Phosphorescence, Interscience, New York, 1949.

    Google Scholar 

  4. J. W. Orton, Electron Paramagnetic Resonance, London Iliffe Books, Ltd., London

    Google Scholar 

  5. J. A. McMillan, Electron Paramagnetism, Reinbold Book Corp., N.Y., 1968

    Google Scholar 

  6. W. Low and E. L. Offenbacker, Electron Spin Resonance of Magnetic Ions in Complex Oxides. Review of ESR Results in Rutile, Perovskites, Spinel and Garnet Structures, in Solid State Physics 17, 136, Ed. by F. Seitz and D. Turnbull, Academic Press, N.Y., 1965.

    Google Scholar 

  7. A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, 1963

    Google Scholar 

  8. G. E. Pake, Nuclear Magnetic Resonance, in Solid State Physics 2, 1 (1954); Spin Temperature and Nuclear Relaxation in Solids, in Solid Statp Physics 15, 409 (1963).

    Google Scholar 

  9. H. Frauenfelder, The Mossbauer Effect, W. A. Benjamin Inc., N.Y., 1962

    Google Scholar 

  10. G. K. Wertheim, Mossbauer Effect: Principles and Applications, Academic Press, N.Y. 1964.

    Google Scholar 

  11. G. Burns, J. Appl. Phys. 32, 2048 (1961).

    Article  CAS  Google Scholar 

  12. E. Sonder and W. A. Sibley, Defect Creation in Polar Crystals, in Solids, Edited by J. H. Crawford, Plenum Publ. Corp., N.Y., to be published.

    Google Scholar 

  13. Y. Chen and W. A. Sibley, Phys. Rev. 154, 842 (1967)

    Article  CAS  Google Scholar 

  14. W. D. Compton and G. W. Arnold, Disc. of Faraday Soc. 31, 130 (1961).

    Article  Google Scholar 

  15. W. A. Sibley and Y. Chen, Phys. Rev. 160, 712 (1967).

    Article  CAS  Google Scholar 

  16. T. Purcell and R. A. Weeks, J. Phys. Chem. Glasses 10(5), 201 (1969).

    Google Scholar 

  17. R. A. Weeks, J. Appl. Phys. 27, 1376 (1956)

    Article  CAS  Google Scholar 

  18. R. A. Weeks, Phys. Rev. 130, 570 (1963)

    Article  CAS  Google Scholar 

  19. R. A. Weeks and E. Sonder, The Relation between the Magnetic Susceptibility, Electron Spin Resonance and Optical Absorption of the E1 center in Fused Silica, in Paramagnetic Resonance Vol. 2, p. 869, Edited by W. Low, Academic Press, N.Y., 1963

    Google Scholar 

  20. R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964)

    Article  CAS  Google Scholar 

  21. J. G. Castle, D. W. Feldman, P. G. Klemens and R. A. Weeks, Phys. Rev. 130, 577 (1963). In this latter paper an oxygen divacancy model was tentatively proposed for the E1 center. Subsequent research has shown that a single oxygen vacancy which has trapped an electron has properties in excellent agreement with the available data.

    Article  Google Scholar 

  22. J. Anderson and J. Weil, J. Chem. Phys. 31, 427 (1959)

    Article  CAS  Google Scholar 

  23. R. A. Weeks and T. Purcell, J. Chem. Phys, 43, 483 (1965).

    Article  CAS  Google Scholar 

  24. R. A. Weeks and P. J. Bray, J. Chem. Phys. 48, 5 (1968).

    Article  CAS  Google Scholar 

  25. D. L. Griscom, BAPS 15, 314 March 1970.

    Google Scholar 

  26. J. Biscoe and B. E. Warren, J. Amer. Cer. Soc. 21, 287 (1938).

    Article  CAS  Google Scholar 

  27. P. J. Bray, Magnetic Resonance Studies of Bonding, Structure and Diffusion in Crystalline and Vitreous Solids, in Interaction of Radiation with Solids, p. 25, Edited by A. Bishay, Plenum Press, N.Y., 1967.

    Google Scholar 

  28. D. K. Stevens, W. J. Sturm and R. H. Silsbee, J. Appl. Phys. 29, 66 (1958).

    Article  CAS  Google Scholar 

  29. M. C. Wittels, Phil. Mag. 2, 1445 (1957).

    Article  CAS  Google Scholar 

  30. R. Comes, M. Lambert and A. Guinier, “Mechanism of the Transformation of Crystalline Quartz into Amorphous Silica by Neutron Irradiation”, in Interaction of Radiation with Solids, p. 319, Edited by A. Bishay, Plenum Press, N.Y. 1967.

    Google Scholar 

  31. E. Lell, N.J. Kreidl and J. Raymond Hensler, “Radiation Effects in Quartz, Silica and Glass”, in Progress in Ceramic Science 4, 4-9, Edited by J.E. Burke, Pergamon Press, 1966.

    Google Scholar 

  32. R. A. Weeks and C. M. Nelson, J. Amer. Cer. Soc. 43, 399 (1960).

    Article  Google Scholar 

  33. R. A. Weeks and M. M. Abraham, BAPS 10, 374 (1965).

    Google Scholar 

  34. T. Purcell and R. A. Weeks, unpublished data.

    Google Scholar 

  35. R. A. Weeks, Phys. Rev. 130, 570 (1963).

    Article  CAS  Google Scholar 

  36. R. A. Weeks, unpublished data. At this distance, the hyperfine interaction is of the same order of magnitude as the interaction between the hydrogen nucleus and the magnetic field, i.e., 5 gauss. One consequence of this equivalence is that the doublet structure shown in Fig. 7 is replaced by a quartet of equally spaced (5 gauss separation) lines of almost equal intensity. That this structure is due to the hyperfine interaction of the E’ electron with a hydrogen nucleus is confirmed by measurements at a higher frequency for which the interaction between magnetic field and the hydrogen nucleus is ∿2.5 times larger. At this field the expected doublet structure is observed with a 5 gauss splitting. The outer two lines are detected but with greatly reduced intensity (∿0.1 the intensity of the two central lines) and separated from the two central lines by ∿12 gauss, the magnitude of the interaction between the hydrogen nucleus and the applied magnetic field.

    Google Scholar 

  37. R. A. Weeks, “Some Defect States of Pure Four-Fold Coordinated Oxides: Expectations and Realization” in Interactions of Radiation with Solids, p.55, Edited by A. Bishay, Plenum Press, New York, 1967.

    Google Scholar 

  38. D. L. Griscom, P. C. Taylor, D. A. Ware, and P. J. Bray, J. Chem. Phys. 48, 5158 (1969).

    Article  Google Scholar 

  39. D. L. Griscom, P. C. Taylor, and P. J. Bray, Submitted to J. Chem. Phys.

    Google Scholar 

  40. J. O. Edwards, D. L. Griscom, R. B. Jones, K. L. Watters and R. A. Weeks, J. Am. Chem. Soc. 91, 1095 (1969).

    Article  CAS  Google Scholar 

  41. V. M. Kim and P. J. Bray, private communication, a paper on this topic has been submitted for publication.

    Google Scholar 

  42. R. J. Landry, J. J. Fournier and C. G. Young, J. Chem. Phys. 46, 1285 (1967)

    Article  CAS  Google Scholar 

  43. G. Hochstrasser, Phys. Chem. Glasses 7, 178 (1966)

    CAS  Google Scholar 

  44. G. Hirayama, J. G. Castle, and M. Kuriyama, Phys. and Chem. Glasses 9, 109 (1968)

    CAS  Google Scholar 

  45. H. G. Hecht, Phys. Chem. Glasses 9, 179 (1968).

    CAS  Google Scholar 

  46. T. Purcell and R. A. Weeks, accepted for publication in J. Chem. Phys.

    Google Scholar 

  47. A. Chatelain and R. A. Weeks, J. Chem. Phys. 52, 3758 (1970).

    Article  CAS  Google Scholar 

  48. D. L. Griscom and R. E. Griscom, J. Chem. Phys. 47(8), 2711 (1967).

    Article  CAS  Google Scholar 

  49. There are many references. A recent one containing detailed computer programs is “Lineshape Program Manual” by P. C. Taylor and P. J. Bray, Department of Physics, Brown University, Providence, Rhode Island. This manual contains programs applicable to both EPR and NMR problems. There is also an excellent introduction to this type of problem in Electron Paramagnetism by Juan A. McMillian, p. 152-162, Reinhold Book Corporation, New York, 1968.

    Google Scholar 

  50. M. H. Cohen and F. Reif, Nuclear Quadrupole Effects in Solids, in Solid State Physics 5, 321, Edited by Seitz and Turnbull, Academic Press, 1957.

    Article  CAS  Google Scholar 

  51. A. M. Stonehan, Rev. of Mod. Phys. 41, 82 (1969).

    Article  Google Scholar 

  52. J. F. Baugher, P. C. Taylor, T. Oja, and P. J. Bray, J. Chem. Phys. 50, 4914 (1969).

    Article  CAS  Google Scholar 

  53. P. J. Bray, “N. M. R. Studies of Glasses and Related Crystalline Solids” in Magnetic Resonance Edited by C. K. Cougan, N. S. Ham, S. N. Stewart, J. R. Pilbrow and G. V. H. Wilson, Plenum Press, New York, 1970.

    Google Scholar 

  54. B. E. Warren, J. Amer. Cer. Soc. 24, 256 (1941).

    Article  CAS  Google Scholar 

  55. H. M. Kriz, S. C. Bishop, and P. J. Bray, J. Chem. Phys. 49, 557 (1968).

    Article  CAS  Google Scholar 

  56. N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1949).

    Article  Google Scholar 

  57. S. G. Bishop and P. J. Bray, J. Chem. Phys. 48, 1709 (1968).

    Article  CAS  Google Scholar 

  58. C. P. Slichter, Principles of Magnetic Resonance, Harper and Row, N.Y. 1963.

    Google Scholar 

  59. R. A. Weeks, A. Chatelain, D. Kline and J. L. Kolopus, Geochimica et Cosmochin. Acta, Proceedings of the Apollo 11 Lunar Science Conference, Houston, Texas from 5-8, 1970. Supplement 1, volume 3, p. 2467.

    CAS  Google Scholar 

  60. D. W. Jones, R. S. Mathews, N. Ruddlesden and D. J. Williams, J. Am. Cer. Soc., 51(11), 664 (1968).

    Article  CAS  Google Scholar 

  61. D. E. Woessner and B. S. Snowden, J. Chem. Phys. 50(4), 1516 (1969).

    Article  CAS  Google Scholar 

  62. C. R. Kurkjian, J. of Non-Cryst. Solids 3(2), 157 (1970).

    Article  CAS  Google Scholar 

  63. B. H. Zimmerman, H. Jena, E. Isshinko, H. Kiban and D. Segboth, Phys. Status Solidi 27, 639 (1965)

    Article  Google Scholar 

  64. C. Czyjek, J. L. C. Ford, Jr., J. C. Love, F. E. Obenshain and H. H. F. Weggener, Phys. Rev. 174, 331 (1968).

    Article  Google Scholar 

  65. C. R. Kurkjian and E. A. Sigety, Phys. Chem. Glasses 9, 73 (1968).

    CAS  Google Scholar 

  66. M. G. Clark, G. M. Bancroft, and A. J. Stone, J. Chem. Phys. 47, 4250 (1967).

    Article  CAS  Google Scholar 

  67. D. L. Uhrich and R. G. Barnes, Phys. Chem. Glasses 9, 184 (1968).

    CAS  Google Scholar 

  68. L. M. Martarese, J. S. Wells, and R. L. Peterson, BAPS 9, 502 (1964).

    Google Scholar 

  69. L. M. Martarese, J. S. Wells, and R. L. Peterson, J. Chem. Phys. 50, 2350 (1969).

    Article  Google Scholar 

  70. W. A. Deer, R. A. Howie, and J. Zussman, Rock Forming Minerals, Vol. I., John Wiley and Sons, New York, 1962.

    Google Scholar 

  71. D. Vinro and S. Hafner, Mineral Soc. Amer. Special Paper 2, 67 (1969).

    Google Scholar 

  72. P. E. Champness and P. Gay, Nature 218, 157 (1968).

    Article  CAS  Google Scholar 

  73. R. A. Weeks, J. L. Kolopus, A. Chatelain, and D. Kline, “Paramagnetic Resonance Spectra of Some Silicate Minerals, Semiannual Technical Progress Report, December 31, 1968, Ornl Cf No. 69-3-5.

    Google Scholar 

  74. Handbook of Chemistry and Physics, 44th Edition, p. 3507-8, Chem. Rubber Pub. Co., 1962.

    Google Scholar 

  75. Selected from Table 3-1 p. 37-39. The Mossbauer Effect, H. Frauenfelder, W. A. Benjamin, New York, 1962, and from Table 2, p. 173, Mossbauer Spectroscopy in Inorganic Glasses, C. R. Kurkjian, J. Non-Crystalline Solids 3, 157 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this paper

Cite this paper

Weeks, R.A. (1972). The Uses of Electron and Nuclear Magnetic Resonance and Nuclear Resonance Fluorescence In Studies of Glass. In: Pye, L.D., Stevens, H.J., LaCourse, W.C. (eds) Introduction to Glass Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0328-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0328-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0330-6

  • Online ISBN: 978-1-4757-0328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics