Skip to main content

Molecular Aspects of Neuroendocrine Integrative Processes in the Pineal Gland

  • Chapter
The Pineal Gland and its Endocrine Role

Abstract

The mammalian pineal gland fulfills the criteria of a “neuroendocrine” transducer.1 It translates a neural language provided by norepinephrine (NE) released at the synaptic biophase to a hormone language,melatonin and perhaps endocrine active peptides. The pinealocytes are also “endocrineendocrine” transducers inasmuch as they convert an endocrine language, e.g. estradiol attaining the gland via the general circulation, to a different endocrine signal like melatonin. Additionally “endocrine-neural” transducer events occur in the pineal gland, as revealed by the significant modifications of the activity of the innery ting sympathetic pathway after several hormone treatments.1,2

Supported by grant n° 6638 from Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina.

Established Investigator, CONICET.

Research Fellow, CONICET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J.Wurtman, Neuroendocrine transducers and monoamines Fed. Proc. 32: 1769 (1973).

    PubMed  CAS  Google Scholar 

  2. D.P.Cardinali, Molecular mechanisms of neuroendocrine integration in the central nervous system: An approach through the study of the pineal gland and its innervating sympathetic pathway, Psychoneuroendocrinology in press.

    Google Scholar 

  3. R.T.Moore, The innervation of the mammalian pineal gland, Proq. Reprod. Biol., 4: 1 (1978).

    CAS  Google Scholar 

  4. M.Brownsteín and J.Axelrod, Pineal gland: 24-hour rhythm in norepinephrine turnover, Science, 148: 163 (1974).

    Article  Google Scholar 

  5. H.Nishino, K.Koizumi and C.Mc C.Brooks, The role of suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythms, Brain Res, 112: 4 (1975).

    Google Scholar 

  6. D.C.Klein, G.R.Berg and J.L.Weller, Melatonin synthesis: Adenosine 35-monophosphate and norepinephrine stimulate N-acetyltransferase, Science, 168: 979 (1970).

    Article  PubMed  CAS  Google Scholar 

  7. R.J.Wurtman, H.M.Shein and F.Larin, Mediation by β -adrenergic receptors of effect of no epinephrine on pineal synthesis of 14C serotonin and 140 melatonin, J. Neurochem, 18: 1683 (1971).

    Article  PubMed  CAS  Google Scholar 

  8. M.Zatz, Sensitivity and cyclic nucleotides in the rat pineal gland, J. Neural Transm, Suppl. 13: 97 (1978)

    PubMed  CAS  Google Scholar 

  9. W.Lovenberg and J.J.Morrisey, Synthesis of RNA in pineal gland during serotonin-N-acetyltransferase induction, Biochem. Pharmacol., 27: 551 (1978).

    Article  PubMed  Google Scholar 

  10. W.Lovenberg and J.J.Morrisey, Protein synthesis in pineal gland during serotonin-N-acetyltransferase induction, Arch. Biochem. Biophys, 191: 1 (1978).

    Article  PubMed  Google Scholar 

  11. F.Pelayo, M.L.Dubocovich and S.Z.Langer, Possible role of cyclic nucleotides in regulation of noradrenaline release from rat pineal through presynaptic adrenoceptors, Nature, 274: 76 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. H.J.Lynch, M.Ho and R.J.Wurtman, The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress, but not that caused by exposure to darkness, J. Neural Transm. 40: 87 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. D.C.Klein and J.Weller, Adrenergic-adenosine 3,5-monophosphate regulation of serotonin-N-acetyltransferase activity to synthesis of 3H-N-acetylserotonin and 3Hmeletonin in the cultured rat pineal gland, J. Pharmacol. Exp. Ther., 189: 516 (1973).

    Google Scholar 

  14. L.Alphs, A.Heller and W.Lovenberg, Adrenergic regulation of the reduction in acetyl coenzyme A: arylamine Nacetyltransferase activity in the rat pineal, J. Neurochem., 34: 83 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. T.L.Smith, J.Eichberg and G.Hanser, Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland, Life Sci., 24: 2179 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. F.Pelayo, M.L.Dubocovich and S.Z.Langer, Regulation of noradrenaline release in the rat pineal gland through a negative feedback mechanism mediated by presynaptic ckadrenoceptors, Eur. J. Pharmacol., 45: 317 (1977).

    CAS  Google Scholar 

  17. M.I.Vacas, P.R.Lowenstein and D.P.Cardinali, Dihydroergocryptine binding sites in bovine and rat pineal glands, J. Auton. Nerv. System, 2: 305 (1980).

    Article  CAS  Google Scholar 

  18. D.C.Klein, D.A.Auerbach, M.A.A.Namboodiri, G.H.T.Wheler, Indole metabolism in the mammalian pineal gland, in: “The Pineal Gland. Vol. I. Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton, Fla. (1981), p. 199.

    Google Scholar 

  19. M.J.Berridge, Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism, Mol. Celi. Endocr., 24: (1981).

    Google Scholar 

  20. E.G.Lapetina, Regulation of arachidonic acid production: Role of phosphalipases C and A2, Trends Pharmacol. Sci., 3: 115 (1982).

    Article  CAS  Google Scholar 

  21. L.S.Wolfe, Eicosanoids: Prostaglandins, thromboxanes, leukotrienes and other derivatives of carbon-20 unsaturated fatty acids, J. Neurochem., 38: 1 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. T.C.Westfall, Neuroeffector mechanisms, Annu. Rev. Physiol., 42: 383 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. R.Szabo and A.J.Friedhoff, Decrease of serotonin-N-acetyltransferase activity in rat pineal organs after treatment with prostaglandin synthesis inhibitor indomethacin, Prostaglandins, 11: 503 (1976).

    PubMed  CAS  Google Scholar 

  24. M.N. Ritta and D.P. Cardinali, Effect of indomethacin treatment on monoamine metabolism and melatonin synthesis of rat pineal gland, Hormone Res., 12: 305 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. N.H.Neff and H.Y.Yang, Another look at the monoamine-oxidase inhibitor drugs, Life Sci., 14: 2061 (1974).

    Article  PubMed  CAS  Google Scholar 

  26. M.I.Uacas and D.P.Cardinali, Effects of castration and reproductive hormones on pineal serotonin metabolism in rats, Neuroendocrinology, 28: 187 (1979).

    Article  Google Scholar 

  27. R.Flowers, Drugs which inhibit prostaglandin synthesis, Pharmacol. Rev., 26: 33 (1974).

    Google Scholar 

  28. H.S.Kantor and M.Hampton, Indomethacin in submicromolar concentrations inhibits cyclic AMP dependent protein kinase, Nature, 276: 841 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. D.P.Cardinali, M.N.Ritta, N.S.Speziale and M.F.Gimeno, Release and specific binding of prostaglandins in bovine pineal gland, Prostaglandins, 18: 577 (1979).

    PubMed  CAS  Google Scholar 

  30. M.Mglller and Th. van Veen, Fluorescence histochemistry of the pineal gland, in:“The Pineal Gland. Uol.I Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton Fla (1981) p. 69.

    Google Scholar 

  31. M.N.Ritta and D.P.Cardinali, Prostaglandin E2 increases adenosine 3,5-monophosphate.concentration and binding site occupancy, and stimulates serotonin-N-acetyltransferase activity in rat pineal glands in vitro, Mol. Cell. Endocr., 23: 151 (1981).

    Article  CAS  Google Scholar 

  32. D.P.Cardinali, M.N.Ritta, C.Gonzalez Solveyra and E. Pereyra, Role of prostaglandins in rat pineal neuroeffector junction. Changes in melatonin and norepinephrine release in vitro, Endocrinology, in press.

    Google Scholar 

  33. S.Suzuki, R.Franco-Saenz and P.J.Mulrow, The role of renal prostaglandins in the renin response to isoproterenol in the rat in vitro, Endocrinology, 108: 1654 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. C.R.Partington, M.W.Edwards and J.W.Daly, Regulation of cyclic AMP formation in brain tissue by α-adrenergic receptors: Requisite intermediacy of prostaglandins of the E series, Proc. Nat. Acad. Sci. USA, 77: 3024 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. P.Hedqvist, Basic mechanisms of prostaglandin action on autonomic neurotransmission, Annu. Rev. Pharmacol. Toxicol. 17: 249 (1977).

    Article  Google Scholar 

  36. S.Hirose, H.Yokosawa, I.Inagami and J.Workman, Renin and prorenin in hog brain: ubiquitous distribution and high concentration in the pituitary and pineal, Brain Res., 191: 489 (1980).

    Article  PubMed  CAS  Google Scholar 

  37. D.G.Changaris, L.M.Demers, L.C.Keil and W.B.Severs, Immunopharmacology of angiotensin I in brain, in: “Central Actions of Angiotensin and Related Hormones” J.P. Buckley and C.Ferraro, eds., Pergamon, New York (1977) p 233.

    Google Scholar 

  38. D.G.Changaris, L.C.Keil and W.B.Severs, Angiotensin II immunohistochemistry of the rat brain, Neuroendocrinology, 25: 257 (1978).

    Article  PubMed  CAS  Google Scholar 

  39. N.M.Panagiotis and G.F.Hungerford, Response of pineal sympathetic nerve processes and endings to angiotensin, Nature, 211: 374 (1966).

    Article  PubMed  CAS  Google Scholar 

  40. I.Haulica, G.Petrescu, M.Ulnitu, V.Rasca and S.Slatineanus, Influence of angiotensin II on dog pineal serotonin content, Neurosci. Lett., 18: 329 (1980).

    Article  PubMed  CAS  Google Scholar 

  41. B.Chertow, The role of lysosomes and proteases in hormone secretion and degradation, Endocr. Rev. 2: 137 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. V.E.Nahmod,M.S.Bwlda, C.J.Pirola, S.Finkielman, P.U.Gejman and D.P.Cardinali, Circadian rhythm and neural regulation of rat pineal angiotensin converting enzyme, Brain Res. 236: 216 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. V.E.Nahmod, E.F.Lazcano, C.J.Pirola, M.S.Balda, A.Alvarez, P.U.Gejman and D.P.Cardinali, Efecto inhibitorio del simpético sobre la actividad del sistema renina-angiotensina en la pineal de la rata, Medicina (Buenos Aires) 40: 770 (1980) (abs).

    Google Scholar 

  44. M.J.Peach, Renin-angiotensin system: Biochemistry and mechanisms of action, Physiol. Rev., 57: 313 (1977).

    PubMed  CAS  Google Scholar 

  45. P.V.Gejman, D.P.Cardinali, S.Finkielman and V.E.Nahmod, Changes in drinking behavior caused by superior cervical ganglionectomy and pinealectomy in rats, J. Auton. Nerv. System, 4: 249 (1981).

    Article  CAS  Google Scholar 

  46. D.P.Cardinali, Hormone effects on the pineal gland, in: “The Pineal Gland. Vol.I. Anatomy and Biochemistry”, R.J.Reiter, ed., CRC Press, Boca Raton Fla (1981) p 243.

    Google Scholar 

  47. D.P.Cardinali, C.A.Nagle and J.M.Rosner, Control of estrogen and androgen receptors in the rat pineal gland by catecholamine transmitter, Life Sci. 16: 93 (1975).

    Article  PubMed  CAS  Google Scholar 

  48. D.P.Cardinali, C.A.Nagle and J.M.Rosner, Metabolic fate of androgens in the pineal organ: Uptake, binding to cytoplasmic proteins and conversion of testosterone into 5α-reduced metabolites, Endocrinology, 95: 179 (1974).

    Article  PubMed  CAS  Google Scholar 

  49. M.I.Vacas, P.R.Lowenstein and D.P.Cardinali, Characterization of a cytosolprogesterone receptor in bovine pineal gland, Neuroendocrinology, 24: 84 (1979).

    Article  Google Scholar 

  50. M.I.Vacas and D.P.Cardinali, Binding sites for melatonin in bovine pineal gland, Hormone Res., 13: 121 (1980).

    Article  PubMed  CAS  Google Scholar 

  51. W.E.Stumpf and M.Sar, Steroid hormone target cells in the periventricular brain: Relationship to peptide hormone producing cells, Fed. Proc., 36: 1973 (1977).

    PubMed  CAS  Google Scholar 

  52. D.P.Cardinali, C.A.Nagle and J.M.Rosner, Aromatization of androgens to estrogens by the rat pineal gland, Experientia, 30: 1222 (1974).

    Article  PubMed  CAS  Google Scholar 

  53. D.P.Cardinali, C.A.Nagle and J.M.Rosner, Gonadal steroids as modulators of the function of the pineal gland, Gen. Comp. Endocr., 26: 50 (1975).

    Article  PubMed  CAS  Google Scholar 

  54. I.Hahukoglu, H.J.Karavolas and R.W.Goy, Progesterone metabolism in the pineal gland, brain stem, thalamus and corpuscallosum of the female rat, Brain Res., 125: 313 (1977).

    Article  Google Scholar 

  55. G.Litwack, ed. “Biochemical Actions of Steroids”, val. 6, Academic Press, New York (1979).

    Google Scholar 

  56. E.U.Jensen, M.Numata, P.I.Brecher and E.R.De Sombre, Hormone-receptor interaction as a guide to biochemical mechanism, in: “The Biochemistry of Steroid Hormone Action”, R.M.S. Smellie, ed., Academic Press, New York (1971) p. 133.

    Google Scholar 

  57. M.Ginsburg, B.D.Greenstein, N.J.MacLusky and P.J.Thomas, An improved method for the study of high affinity steroid binding: Oestradiol binding in the brain and pituitary, Steroids, 23: 773 (1974).

    PubMed  CAS  Google Scholar 

  58. D.P.Cardinali, Nuclear receptor-estrogen complex in the pineal gland. Modulation by sympathetic nerves, Neuroendocrinology, 24: 333 (1977).

    Article  PubMed  CAS  Google Scholar 

  59. I.Lieberburg, N.MacLusky and B.S.McEwen, Cytoplasmic and nuclear estradiol-17β binding in male and female rat brain: Regional distribution, temporal aspects and metabolism, Brain Res., 193: 487 (1980).

    Article  PubMed  CAS  Google Scholar 

  60. T.G.Muldoon, Regulation of steroid hormone activity, Endocr. Rev., 1: 339 (1980).

    Article  PubMed  CAS  Google Scholar 

  61. D.P.Cardinali, E.Gomez and J.M.Rosner, Changes in 3H-leu-cine incorporation into pineal proteins following estradiol or testosterone administration: Involvement of the sympathetic superior cervical ganglion, Endocrinology, 94: 849 (1976).

    Article  Google Scholar 

  62. N.Emmelin and U.Trendelenburg, Degeneration activity after parasympathetic or sympathetic denervation, Rev. Physiol. Biochem. Exp. Pharmacol., 66: 148 (1972).

    Google Scholar 

  63. P.Schotman, J.Allart and W.H.Gispen, Pineal protein synthesis highly sensitive to ACTH-like neuropeptides, Brain Res., 219: 121 (1981).

    Article  PubMed  CAS  Google Scholar 

  64. C.A.Nagle, D.P.Cardinali and J.M.Rosner, Testosterone effects on protein synthesis in the rat pineal gland. Modulation by the sympathetic nervous system, Life Sci., 16: 81 (1975).

    Article  PubMed  CAS  Google Scholar 

  65. C.A.Nagle, D.P.Cardinali and J.M.Rosner Diurnal rhythm in tissue radioactivity uptake after 3-H-estradiol and 3H-testosterone administration to castrated rats, Steroids Lip. Res., 5: 107 (1974).

    CAS  Google Scholar 

  66. P.Seem, C.Demaine and L.Uollrath, The effects of sex hormones,prolactin and chorionic gonadotrophin on pineal electrical activity in guinea pigs. Cell. Mol. Neurobiol. 1: 259 (1981).

    Article  Google Scholar 

  67. J.T.Epplen, H.Kaltenhauser, W.Engel and J.Schmidtke, Patterns of cyclic AMP phosphodiesterases in the rat pineal gland: Sex differences in diurnal rhythmicity, Neuro-endocrinology, 34: 46 (1982).

    CAS  Google Scholar 

  68. D.P.Cardinali, C.A.Nagle, E.Gomez and J.M.Rosner, Norepinephrine turnover in the rat pineal gland. Acceleration by estradiol and testosterone, Life Sci., 16: 1717 (1975).

    Article  PubMed  CAS  Google Scholar 

  69. D.P.Cardinali and M.I.Uacas, Norepinephrine turnover in pineal gland and superior cervical ganglia. Changes after gonadotrophin administration to castrated rats, J. Neural Transm. 45: 273 (1979).

    Article  PubMed  CAS  Google Scholar 

  70. D.P.Cardinali, M.I.Uacas and P.U.Gejman, The sympathetic superior cervical ganglia as peripheral neuroendocrine centers, J. Neural. Transm., 52: 1 (1981).

    Article  PubMed  CAS  Google Scholar 

  71. M.I.Uacas, P.R.Lowenstein and D.P.Cardinali, Testosterone decreases β-adrenoceptor sites in rat pineal gland and brain, J. Neural Transm. 53: 49 (1982).

    Article  Google Scholar 

  72. M.I.Uacas and D.P.Cardinali, Effect of estradiol on and β-adrenoceptor density in medial basal hypothalamus, cerebral cortex and pineal gland of ovariectomized rats, Neurosci. Lett., 17: 73 (1980).

    Article  Google Scholar 

  73. D.P.Cardinali, M.I.Uacas, C.E.Ualenti and C.Gonzalez Solveyra, Pineal gland and sympathetic cervical ganglia as sites for steroid regulation of photosensitive neuro-endocrine pathways, J. Steroid Biochem., 11: 951 (1979).

    Article  PubMed  CAS  Google Scholar 

  74. L.T.Williams and R.J.Lefkowitz, “Receptor Binding Studies in Adrenergic Pharmacology”, Raven Press, New York (1978).

    Google Scholar 

  75. D.P.Cardinali, M.I.Uacas, A.L.Fortis and F.J.Stefano, Superior cervical ganglionectomy depresses norepinephrine uptake, increases the density of α-adrenoceptor sites and induces supersensitivity to adrenergic drugs in rat medial basal hypothalamus, Neuroendocrinology, 33: 199 (1981).

    Article  PubMed  CAS  Google Scholar 

  76. M.Pisarev, D.P.Cardinali, G.Juvenal, M.I.Uacas, M.Barontini and R.Boado, The role of the sympathetic nervous system in the control of the goitrogenic response in the rat. Endocrinologj, 109: 2202 (1981).

    Article  CAS  Google Scholar 

  77. D.P.Cardinali, M.Pisarev, M.Barontini, G.Juvenal, R.Boado and M.I.Uacas, Efferent neuroendocrine pathways of sympathetic superior cervical ganglia. Early inhibition of pituitary-thyroid axis after ganglionectomy, Neuroendocrinology, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardinali, D.P. et al. (1983). Molecular Aspects of Neuroendocrine Integrative Processes in the Pineal Gland. In: Axelrod, J., Fraschini, F., Velo, G.P. (eds) The Pineal Gland and its Endocrine Role. NATO Advanced Science Institutes Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1451-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1451-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1453-1

  • Online ISBN: 978-1-4757-1451-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics