Skip to main content

Bioviscoelastic Fluids

  • Chapter
Biomechanics

Abstract

Most biofluids are viscoelastic. Our saliva, for example, behaves more like an elastic body than like water. Mucus, sputum, and synovial fluids are well known for their elastic behavior. Viscoelasticity is an important property of mucus. In the respiratory tract mucus is moved by cilia lining the walls of the trachea and bronchi. If the mucus were a Newtonian fluid, the ciliary motion will be less effective in moving it. Similar ciliary motion is responsible for the movement of the ovum from ovary to uterus through the fallopian tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balazs, E. A. (1966) Sediment volume and viscoelastic behavior of hyaluronic acid solutions. Fed. Proc. 25, 1817–1822.

    PubMed  CAS  Google Scholar 

  • Balazs, E. A. (1968) Univ. Michigan Med. Center J. Special Issue, 34, 225.

    Google Scholar 

  • Balazs, E. A. and Gibbs, D. A. (1970) The rheological properties and biological function of hyaluronic acid. In Chemistry and Molecular Biology of the Intercellular Matrix, E. A. Balazs ed. Academic Press, New York, Vol. 3, pp. 1241–1253. For details see Gibbs et al. (1968) Biopolymers 6, 777–791.

    Google Scholar 

  • Basser, P. J., McMahon, T. A., and Griffith, P. (1989) The mechanics of mucus clearance in cough. J. Biomech. Eng. 111, 289–297.

    Article  Google Scholar 

  • Bingham, E. C. and White, C. F. (1911) Viscosity and fluidity of emulsions, crystallin liquids, and colloidal solutions. J. Am. Chem. Soc. 33, 1257–1268.

    Article  CAS  Google Scholar 

  • Burgers, J. M. (1935) First Report on Viscosity and Plasticity. Prepared by the Committee for the Study of Viscosity of the Academy of Sciences at Amsterdam. Kon. Ned. Akad. Wet. Verhand 15, 1.

    Google Scholar 

  • Burgers, J. M. (1938) Second Report on Viscosity and Plasticity. Prepared by the Committee for the Study of Viscosity of the Academy of Sciences at Amsterdam. Kon Ned. Akad. Wet., Verhand 16, 1–287.

    Google Scholar 

  • Clift, A. F., Glover, F. A., and Scott Blair, G. W. (1950) Lancet 258, 1154–1155.

    Article  Google Scholar 

  • Davis, S. (1973) In Rheology of Biological Systems, H. L. Gabelnick and M. Litt eds. Charles C. Thomas, Springfield, IL, pp. 158–194.

    Google Scholar 

  • Einstein, A. (1905) Investigations on the Theory of Brownian Movement, with notes by R. Fürth, translated into English from German by A. D. Cowper, Methuen, London (1926), Dover Publications (1956). Original paper in Ann. Phys. 17 (1905), p. 549.

    CAS  Google Scholar 

  • Frey-Wyssling, A. (ed.) (1952) Deformation and Flow in Biological Systems. North-Holland, Amsterdam.

    Google Scholar 

  • Fung, Y. C. (1984) Biodynamics: Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Gabelnick, H. L. and Litt, M. (eds.) (1973) Rheology of Biological Systems. Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Gibbs, D. A., Merrill, E. W., and Smith, K. A. (1968) Rheology of hyaluronic acid. Biopolymers 6, 777–791.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, E. N. (1938) Some physical properties of protoplasm J. Appl. Phys. 9, 68–80.

    Article  Google Scholar 

  • Heilbrunn, L. V. (1926) The centrifuge method of determining protoplasmic viscosity. J. Exp. Zool. 43, 313–320.

    Article  CAS  Google Scholar 

  • Heilbrunn, L. V. (1956) The Dynamics of Living Protoplasm. Academic Press, New York.

    Google Scholar 

  • Heilbrunn, L. V. The Viscosity of Protoplasm. Plasmatologia Springer-Verlag, Wien, Vol. 2.

    Google Scholar 

  • King, R. G. (1966) A rheological measurement of three synovial fluids. Rheol. Acta 5, 41–44.

    Article  Google Scholar 

  • Kuethe, A. M. and Chow, C.-Y. Foundations of Aerodynamics,4th edition. John Wiley, New York.

    Google Scholar 

  • Lai, W. M., Kuei, S. C., and Mow, V. S. (1978) Rheological equations for synovial fluids. J. Biomech. Eng. 100, 169–186.

    Article  Google Scholar 

  • Lamar, J. K., Shettles, L. B., and Delfs, E. (1940) Cyclic penetrability of human cervical mucus to spermatozoa in vitro. Am. J. Physiol. 129, 234–241.

    Google Scholar 

  • Lutz, R. J., Litt, M., and Chakrin, L. W. (1973) Physical—chemical factors in mucus rheology. In Rheology of Biological Systems, H. L. Gabelnick and M. Litt (eds.) Charles C. Thomas, Springfield, IL, pp. 119–157.

    Google Scholar 

  • Ogston, A. G. (1970) The biological function of the glycosaminoglycans. In Chemistry and Molecular Biology of the Intercellular Matrix, E. A. Balazs (ed.) Academic Press, New York, pp. 1231–1240.

    Google Scholar 

  • Ogston, A. G. and Stanier, J. E. (1953) The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol. (London)119, 244–252 and 253–258. See also, Biochem. J. (1952), 52, 149–156.

    PubMed  CAS  Google Scholar 

  • Radin, E. L., Swann, D. A., and Weisser, P. A. (1970) Separation of a hyaluronate-free lubrication fraction from synovial fluid. Nature 228, 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Scott Blair, G. W. (1974) An Introduction to Biorheology. Elsevier, New York.

    Google Scholar 

  • Taylor, G. I. (1951) Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. London A 209, 447–461.

    Article  Google Scholar 

  • Taylor, G. I. (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc. Roy. Soc. London A 211, 225–239.

    Article  Google Scholar 

  • von Khreningen-Guggenberger, J. (1933) Experimentelle Untersuchungen über die vertikale spermien wanderung. Arch. Gynäk. 153, 64–66.

    Google Scholar 

  • Wardell, J. R., Jr., Chakrin, L. W., and Payne, B. J. (1970) The canine tracheal pouch: A model for use in respiratory mucus research. Am. Rev. Resp. Dis. 101, 741–754.

    Google Scholar 

  • Wu, T. Y., Brokaw, C. J., and Brennen, C. (eds.) (1974) Swimming and Flying in Nature, 2 Vols. Plenum Press, New York.

    Google Scholar 

  • Yih, C. S. (1977) Fluid Mechanics, A Concise Introduction to the Theory,corrected edition. West River Press, Ann Arbor, MI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, YC. (1993). Bioviscoelastic Fluids. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2257-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3104-7

  • Online ISBN: 978-1-4757-2257-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics