Skip to main content

The Role of Peroxisome Proliferator Activated Receptor α in Peroxisome Proliferation, Physiological Homeostasis, and Chemical Carcinogenesis

  • Chapter
Dietary Fat and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 422))

Abstract

Peroxisomes are single membrane-bound organelles, found in all cells, that contain a variety of enzymes involved in a number of metabolic processes1. The most well characterized reactions carried out by peroxisomes are those involved in fatty acid I3-oxidation. The peroxisomal β-oxidation system metabolizes very long chain and long chain fatty acids and cannot metabolize short chain fatty acids (<6 units) whereas the mitochondrial system most efficiently oxidizes long, medium and short chain fatty acids down to two carbon units. The peroxisomal acyl-CoA oxidase enzyme generates H2O2 while the corresponding mitochondrial enzymes lead to production of NADH. Since plants lack mitochondria, peroxisomes are solely responsible for their fatty acid β-oxidation. The production of H2O2 by peroxisomal acyl-CoA oxidase has been used as a cytological marker for the organelle through staining with diaminobenzidine and historically accounts for the name “peroxisomes”1. Peroxisome proliferation can result in an excess of H2O2 that can potentially result in toxicity as discussed below. Under usual circumstances H2O2 is decomposed to molecular oxygen and water by catalase and glutathione peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reddy, J.K. and Mannaerts, G.P. Peroxisomal lipid metabolism. Annu. Rev. Nutr., 14: 343–370, 1994.

    CAS  Google Scholar 

  2. Wanders, R.J., Schutgens, R.B., and Barth, P.G. Peroxisomal disorders: a review. J. Neuropathol. Exp. Neurol., 54: 726–739, 1995.

    Article  CAS  Google Scholar 

  3. Wanders, R.J., Barth, P.O., Schutgens, R.B., and Tager, J.M. Clinical and biochemical characteristics of peroxisomal disorders: an update. Eur. J. Pediatr., 153: S44 - S48, 1994.

    Article  CAS  Google Scholar 

  4. Reddy, J.K., Goel, S.K., Nemali, M.R., Canino, J.J., Laffler, T.G., Reddy, M.K., Sperbeck, S.J., Osumi, T., Hashimoto, T., and Lalwani, N.D. Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. Proc. Natl. Acad. Sci. USA., 83: 1747–1751, 1986.

    Article  CAS  Google Scholar 

  5. Kimura, S., Hardwick, J.P., Kozak, C.A., and Gonzalez, F.J. The rat clofibrate-inducible CYP4A subfamily. I1. cDNA sequence of IVA3, mapping of the Cyp4a locus to mouse chromosome 4, and coordinate and tissue-specific regulation of the CYP4A genes. DNA, 8: 517–525, 1989.

    Article  CAS  Google Scholar 

  6. Kimura, S., Hanioka, N., Matsunaga, E., and Gonzalez, F.J. The rat clofibrate-inducible CYP4A gene subfamily. I. Complete intron and exon sequence of the CYP4A 1 and CYP4A2 genes, unique exon organization, and identification of a conserved 19-bp upstream element. DNA, 8: 503–516, 1989.

    Article  CAS  Google Scholar 

  7. Issemann, I., Prince, R.A., Tugwood, J.D., and Green, S. The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J. Mol. Endocrinol., 11: 37–47, 1993.

    Article  CAS  Google Scholar 

  8. Green, S. PPAR: a mediator of peroxisome proliferator action. Mutat. Res., 333: 101–109, 1995.

    Article  CAS  Google Scholar 

  9. Gottlicher, M., Widmark, E., Li, Q., and Gustafsson, J.A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA., 89: 4653–4657, 1992.

    Article  CAS  Google Scholar 

  10. Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., and Wahli, W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68: 879–887, 1992.

    Article  CAS  Google Scholar 

  11. Zhu, Y., Alvares, K., Huang, Q., Rao, M.S., and Reddy, J.K. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J. Biol. Chem., 268: 26817–26820, 1993.

    CAS  Google Scholar 

  12. Zhu, Y., Qi, C., Korenberg, J.R., Chen, X.N., Noya, D., Rao, M.S., and Reddy, J.K. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc. Natl. Acad. Sci. USA., 92: 7921–7925, 1995.

    Article  CAS  Google Scholar 

  13. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.l., and Spiegelman, B.M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes. Dev., 8: 1224–1234, 1994.

    Article  CAS  Google Scholar 

  14. Chen, F., Law, S.W., and O’Malley, B.W. Identification of two mPPAR related receptors and evidence for the existence of five subfamily members. Biochem. Biophys. Res. Commun., 196: 671–677, 1993.

    CAS  Google Scholar 

  15. Kliewer, S.A., Forman, B.M., Blumberg, B., Ong, E.S., Borgmeyer, U., Mangelsdorf, D.J., Umesono, K., and Evans, R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA., 91: 7355–7359, 1994.

    Article  CAS  Google Scholar 

  16. Jow, L. and Mukherjee, R. The human peroxisome proliferator-activated receptor (PPAR) subtype NUCI represses the activation of hPPAR alpha and thyroid hormone receptors. J. Biol. Chem., 270: 3836–3840, 1995.

    Article  CAS  Google Scholar 

  17. Amri, E.Z., Bonino, F., Ailhaud, G., Abumrad, N.A., and Grimaldi, P.A. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J. Biol. Chem., 270: 2367–2371, 1995.

    Article  CAS  Google Scholar 

  18. Lemberger, T., Staels, B., Saladin, R., Desvergne, B., Auwerx, J., and Wahli, W. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J. Biol. Chem., 269: 24527–24530, 1994.

    CAS  Google Scholar 

  19. Braissant, O., Foufelle, F., Scotto, C., Dauca, M., and Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 137: 354–366, 1996.

    Article  CAS  Google Scholar 

  20. Tontonoz, P., Hu, E., and Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor [published erratum appears in Cell 1995 Mar 24;80(6):following 957]. Cell, 79: 1147–1156, 1994.

    Article  CAS  Google Scholar 

  21. Tontonoz, P., Hu, E., and Spiegelman, B.M. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr. Opin. Genet. Dev., 5: 571–576, 1995.

    Article  CAS  Google Scholar 

  22. Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A., Wilkison, W.O., Willson, T.M., and Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem., 270: 12953–12956, 1995.

    Article  CAS  Google Scholar 

  23. Goecke-Flora, C.M., Wyman, J.F., Jarnot, B.M., and Reo, N.V. Effect of the peroxisome proliferator perfluoro-n-decanoic acid on glucose transport in the isolated perfused rat liver. Chem. Res. Toxicol., 8: 77–81, 1995.

    Article  CAS  Google Scholar 

  24. Sher, T., Yi, H.F., McBride, O.W., and Gonzalez, F.J. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry, 32: 5598–5604, 1993.

    CAS  Google Scholar 

  25. Muerhoff, A.S., Griffin, K.J., and Johnson, E.F. The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omega-hydroxylase, by clofibric acid. J. Biol. Chem., 267: 19051–19053, 1992.

    CAS  Google Scholar 

  26. Brandes, R., Kaikaus, R.M., Lysenko, N., Ockner, R.K., and Bass, N.M. Induction of fatty acid binding protein by peroxisome proliferators in primary hepatocyte cultures and its relationship to the induction of peroxisomal beta-oxidation. Biochim. Biophys. Acta, 1034: 53–61, 1990.

    Article  CAS  Google Scholar 

  27. Gulick, T., Cresci, S., Caira, T., Moore, D.D., and Kelly, D.P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad. Sci. USA., 91: 11012–11016, 1994.

    CAS  Google Scholar 

  28. Rodriguez, J.C., Gil-Gomez, G., Hegardt, F.G., and Haro, D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem., 269: 18767–18772, 1994.

    CAS  Google Scholar 

  29. Castelein, H., Gulick, T., Declercq, P.E., Mannaerts, G.P., Moore, D.D., and Baes, M.I. The peroxisome proliferator activated receptor regulates malic enzyme gene expression. J. Biol. Chem., 269: 26754–26758, 1994.

    CAS  Google Scholar 

  30. Kaikaus, R.M., Chan, W.K., Lysenko, N., Ray, R., Ortiz de Montellano, P.R., and Bass, N.M. Induction of peroxisomal fatty acid beta-oxidation and liver fatty acid-binding protein by peroxisome proliferators. Mediation via the cytochrome P-450IVAI omega-hydroxylase pathway. J. Biol. Chem., 268: 9593–9603, 1993.

    CAS  Google Scholar 

  31. Demoz, A., Vaagenes, H., Aarsaether, N., Hvattum, E., Skorve, J., Gottlicher, M., Lillehaug, J.R., Gibson, G.G., Gustafsson, J.A., and Hood, S. Coordinate induction of hepatic fatty acyl-CoA oxidase and P4504A 1 in rat after activation of the peroxisome proliferator-activated receptor (PPAR) by sulphur-substituted fatty acid analogues. Xenobiotica., 24: 943–956, 1994.

    Article  CAS  Google Scholar 

  32. Berge, R.K., Aarsland, A., Kryvi, H., Bremer, J., and Aarsaether, N. Alkylthioacetic acid (3-thia fatty acids) -a new group of non-beta-oxidizable, peroxisome-inducing fatty acid analogues. 1. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver. Biochim. Biophys. Acta, 1004: 345–356, 1989.

    CAS  Google Scholar 

  33. Kaikaus, R.M., Sui, Z., Lysenko, N., Wu, N.Y., Ortiz de Montellano, P.R., Ockner, R.K., and Bass, N.M. Regulation of pathways of extramitochondrial fatty acid oxidation and liver fatty acid-binding protein by long-chain monocarboxylic fatty acids in hepatocytes. Effect of inhibition of camitine palmitoyltransferase I. J. Biol. Chem., 268: 26866–26871, 1993.

    CAS  Google Scholar 

  34. Aldridge, T.C., Tugwood, J.D., and Green, S. Identification and characterization of DNA elements implicated in the regulation of CYP4A 1 transcription. Biochem. J., 306: 473–479, 1995.

    CAS  Google Scholar 

  35. Kliewer, S.A., Umesono, K., Noonan, D.J., Heyman, R.A., and Evans, R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 358: 771–774, 1992.

    Article  CAS  Google Scholar 

  36. Gearing, K.L., Gottlicher, M., Teboul, M., Widmark, E., and Gustafsson, J.A. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc. Natl. Acad. Sci. USA., 90: 1440–1444, 1993.

    Article  CAS  Google Scholar 

  37. Huan, B., Kosovsky, M.J., and Siddiqui, A. Retinoid X receptor alpha transactivates the hepatitis B virus enhancer 1 element by forming a heterodimeric complex with the peroxisome proliferator-activated receptor. J. Virol., 69: 547–551, 1995.

    CAS  Google Scholar 

  38. Bogazzi, F., Hudson, L.D., and Nikodem, V.M. A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J. Biol. Chem. 269: 11683–11686, 1994.

    CAS  Google Scholar 

  39. Ladias, J.A. and Karathanasis, S.K. Regulation of the apolipoprotein Al gene by ARP-I, a novel member of the steroid receptor superfamily. Science, 251: 561–565, 1991.

    Article  CAS  Google Scholar 

  40. Ladias, J.A., Hadzopoulou-Cladaras, M., Kardassis, D., Cardot, P., Cheng, J., Zannis, V., and Cladaras, C. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J. Biol. Chem., 267: 15849–15860, 1992.

    CAS  Google Scholar 

  41. Palmer, C.N., Hsu, M.H., Muerhoff, A.S., Griffin, K.J., and Johnson, E.F. Interaction of the peroxisome proliferator-activated receptor alpha with the retinoid X receptor alpha unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-I-binding site in the CYP4A6 promoter. J. Biol. Chem., 269: 18083–18089, 1994.

    CAS  Google Scholar 

  42. Winrow, C.J., Marcus, S.L., Miyata, K.S., Zhang, B., Capone, J.P., and Rachubinski, R.A. Transactivation of the peroxisome proliferator-activated receptor is differentially modulated by hepatocyte nuclear factor-4. Gene Expr., 4: 53–62, 1994.

    CAS  Google Scholar 

  43. Carter, M.E., Gulick, T., Raisher, B.D., Caira, T., Ladias, J.A., Moore, D.D., and Kelly, D.P. Hepatocyte nuclear factor-4 activates medium chain acyl-CoA dehydrogenase gene transcription by interacting with a complex regulatory element. J. Biol. Chem., 268: 13805–13810, 1993.

    CAS  Google Scholar 

  44. Hertz, R., Bishara-Shieban, J., and Bar-Tana, J. Mode of action of peroxisome proliferators as bypolipidemic drugs. Suppression of apolipoprotein C-III. J. Biol. Chem., 270: 13470–13475, 1995.

    Article  CAS  Google Scholar 

  45. Staels, B., Van Tol, A., Andreu, T., and Auwerx, J. Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat. Arterioscler. Thromb., 12: 286–294, 1992.

    Article  CAS  Google Scholar 

  46. Berthou, L., Saladin, R., Yaqoob, R, Calder, P., Fruchart, J.C., Denefle, P., Auwerx, J., and Staels, B. Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II, and acyl-CoA oxidase gene expression by fibrates and dietary faty acids. Eur. J. Biochem., 232: 179–187, 1985.

    Article  Google Scholar 

  47. Staels, B., Van Tol, A., Skretting, G., and Auwerx, J. Lecithin:cholesterol acyltransferase gene expression is regulated in a tissue-selective manner by fibrates. J. Lipid. Res., 33: 727–735, 1992.

    CAS  Google Scholar 

  48. Bovard-Houppermans, S., Ochoa, A., Fruchart, J.C., and Zakin, M.M. Fenofibric acid modulates the human apolipoprotein A-IV gene expression in HepG2 cells. Biochem. Biophys. Res. Commun., 198: 764–769, 1994.

    CAS  Google Scholar 

  49. Schmidt, A., Endo, N., Rutledge, S.J., Vogel, R., Shinar, D., and Rodan, G.A. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol. Endocrinol., 6: 1634–1641, 1992.

    Article  CAS  Google Scholar 

  50. Mellies, M.J., Stein, E.A, Khoury, R, Lamkin, G., and Glueck, C.J. Effects of fenofibrate on lipids, lipoproteins and apolipoproteins in 33 subjects with primary hypercholesterolaemia. Atherosclerosis 78: 167–182, 1989.

    Article  Google Scholar 

  51. Vu-Dac, N., Schoonjans, K., Laine, B., Fruchart, J.C., Auwerx, J., and Staels, B. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its response element. J. Biol. Chem., 269: 31012–31018, 1994.

    CAS  Google Scholar 

  52. Reddy, J.K., Azamoff, D.L., and Hignite, C.E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature, 283: 397–398, 1980.

    Article  CAS  Google Scholar 

  53. Reddy, J.K., Scarpelli, D.G., Subbarao, V., and Lalwani, N.D. Chemical carcinogens without mutagenic activity: peroxisome proliferators as a prototype. Toxicol. Pathol., 11: 172–180, 1983.

    Article  CAS  Google Scholar 

  54. Reddy, J.K. and Lalwani, N.D. Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit. Rev. Toxicol., 12: 1–58, 1993.

    Article  Google Scholar 

  55. Reddy, J.K. and Rao, M.S. Peroxisome proliferators and cancer: mechanisms and implications. Trends. Pharmacol. Sci., 7: 631–636, 1996.

    Google Scholar 

  56. Rao, M.S., Kokkinakis, D.M., Subbarao, V., and Reddy, J.K. Peroxisome proliferator-induced hepatocarcinogenesis: levels of activating and detoxifying enzymes in hepatocellular carcinomas induced by ciprofibrate. Carcinogenesis, 8: 19–23, 1987.

    Article  CAS  Google Scholar 

  57. Warren, J.R., Simmon, V.F., and Reddy, J.K. Properties of hypolipidemic peroxisome proliferators in the lymphocyte [31I]thymidine and Salmonella mutagenesis assays. Cancer Res., 40: 36–41, 1980.

    CAS  Google Scholar 

  58. Glauert, H.P. Reddy, J.K., Kennan, W.S., Sattler, G.L., Rao, V.S., and Pitot, H.C. Effect of hypolipidemic peroxisome proliferators on unscheduled DNA synthesis in cultured hepatocytes and on mutagenesis in Salmonella. Cancer Lett., 24: 147–156, 1984.

    Google Scholar 

  59. Yoshikawa, K., Tanaka, A., Yamaha, T., and Kurata, H. Mutagenicity study of nine monoalkyl phthalates and a dialkyl phthalate using Salmonella typhimurium and Escherichia coli. Food. Chem. Toxicol., 21: 221–223, 1983.

    Article  CAS  Google Scholar 

  60. Agarwal, D.K., Lawrence, W.H., Nunez, L.J., and Autian, J. Mutagenicity evaluation of phthalic acid esters and metabolites in Salmonella typhimurium cultures. J. Toxicol. Environ. Health, 16: 61–69, 1985.

    Article  CAS  Google Scholar 

  61. Cattley, R.C., Smith-Oliver, T., Butterworth, B.E., and Popp, J.A. Failure of the peroxisome proliferator WY-14,643 to induce unscheduled DNA synthesis in rat hepatocytes following in vivo treatment. Carcinogenesis, 9: 1179–1183. 1988.

    Article  CAS  Google Scholar 

  62. Williams, G.M., Maruyama, H., and Tanaka. T. Lack of rapid initiating, promoting or sequential syncarcinogenic effects of di(2-ethylhexyl)phthalate in rat liver carcinogenesis. Carcinogenesis, 8: 875–880, 1987.

    Article  CAS  Google Scholar 

  63. Cattley, R.C., Marsman, D.S., and Popp, J.A. Failure of the peroxisome proliferator WY-14,643 to initiate growth-selectable foci in rat liver. Toxicology., 56: 1–7, 1989.

    Article  CAS  Google Scholar 

  64. Conway, J.G., Tomaszewski, K.E., Olson, M.J., Cattley, R.C., Marsman, D.S., and Popp, J.A. Relationship of oxidative damage to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and Wy-14,643. Carcinogenesis, 10: 513–519, 1989.

    Article  CAS  Google Scholar 

  65. Marsman, D.S., Goldsworthy, T.L., and Popp, J.A. Contrasting hepatocytic peroxisome proliferation, lipofuscin accumulation and cell turnover for the hepatocarcinogens Wy-14,643 and clofibric acid. Carcinogenesis, 13: 1011–1017, 1992.

    Article  CAS  Google Scholar 

  66. Kasai, H. Okada, Y., Nishimura, S., Rao, M.S., and Reddy, J.K. Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res., 49: 2603–2605, 1989.

    Google Scholar 

  67. Takagi, A., Sai, K., Umemura, T., Hasegawa, R., and Kurokawa, Y. Relationship between hepatic peroxisome proliferation and 8-hydroxydeoxyguanosine formation in liver DNA of rats following long-term exposure to three peroxisome proliferators; di(2-ethylhexyl) phthalate, aluminium clofibrate and simfibrate. Cancer Lett., 53: 33–38, 1990.

    Article  CAS  Google Scholar 

  68. Hegi, M.E., Ulrich, D., Sagelsdorff, R, Richter, C., and Lutz, W.K. No measurable increase in thymidine glycol or 8-hydroxydeoxyguanosine in liver DNA of rats treated with nafenopin or choline-devoid lowmethionine diet. Mutat. Res., 238: 325–329, 1990.

    Article  CAS  Google Scholar 

  69. Cattley, R.C. and Glover, S.E. Elevated 8-hydroxydeoxyguanosine in hepatic DNA of rats following exposure to peroxisome proliferators: relationship to carcinogenesis and nuclear localization. Carcinogenesis, 14: 2495–2499, 1993.

    Article  CAS  Google Scholar 

  70. Chu, S., Huang, Q., Alvares, K., Yeldandi, A.V., Rao, M.S., and Reddy, J.K. Transformation of mammalian cells by overexpressing H,02-generating peroxisomal fatty acyl-CoA oxidase. Proc. Natl. Acad. Sci. USA, 92: 7080–7084, 1995.

    Article  CAS  Google Scholar 

  71. Mikalsen, S.O., Holen, I., and Sanner, T. Morphological transformation and catalase activity of Syrian hamster embryo cells treated with hepatic peroxisome proliferators, TPA and nickel sulphate. Cell Biol. Toxicol., 6: 1–13, 1990.

    CAS  Google Scholar 

  72. Tsutsui, T., Watanabe, E., and Barrett, J.C. Ability of peroxisome proliferators to induce cell transformation, chromosome aberrations and peroxisome proliferation in cultured Syrian hamster embryo cells. Carcinogenesis, 14: 611–618, 1993.

    Article  CAS  Google Scholar 

  73. Cattley, R.C., Marsman, D.S., and Popp, J.A. Age-related susceptibility to the carcinogenic effect of the peroxisome proliferator WY-14,643 in rat liver. Carcinogenesis (in press), 1996.

    Google Scholar 

  74. Farber, E. Experimental induction of hepatocellular carcinoma as a paradigm for carcinogenesis. Clin. Physiol. Biochem., 5: 152–159, 1987.

    Google Scholar 

  75. Moody, D.E., Rao, M.S., and Reddy, J.K. Mitogenic effect in mouse liver induced by a hypolipidemic drug, nafenopin. Virchows Arch. B. Cell Pathol., 23: 291–296, 1977.

    CAS  Google Scholar 

  76. Marsman, D.S., Cattley, R.C., Conway, J.G., and Popp, J.A. Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) in rats. Cancer Res., 48: 6739–6744, 1988.

    CAS  Google Scholar 

  77. Reddy, J.K., Reddy, M.K., Usman, M.I., Lalwani, N.D., and Rao, M.S. Comparison of hepatic peroxisome proliferative effect and its implication for hepatocarcinogenicity of phthalate esters, di(2-ethylhexyl) phthalate, and di(2-ethylhexyl) adipate with a hypolipidemic drug. Environ. Health Perspect., 65: 3I7–327, 1986.

    Google Scholar 

  78. Tomaszewski, K.E., Agarwal, D.K., and Melnick, R.L. In vitro steady-state levels of hydrogen peroxide after exposure of male F344 rats and female B6C3F I mice to hepatic peroxisome proliferators. Carcinogenesis, 7: 1871–1876, 1986.

    Google Scholar 

  79. Barrett, J.C. Mechanisms for species differences in receptor-mediated carcinogenesis. Mutat. Res., 333: 189–202, 1995.

    Article  Google Scholar 

  80. Bayly, A.C., Roberts, R.A., and Dive, C. Suppression of liver cell apoptosis in vitro by the non-genotoxic hepatocarcinogen and peroxisome proliferator nafenopin. J. Cell Biol., 125: 197–203, 1994.

    Article  CAS  Google Scholar 

  81. Roberts, R.A., Soames, A.R., Gill, J.H., James, N.H., and Wheeldon, E.B. Non-genotoxic hepatocarcinogens stimulate DNA synthesis and their withdrawal induces apoptosis, but in different hepatocyte populations. Carcinogenesis, 16: 1693–1698, 1995.

    Article  CAS  Google Scholar 

  82. James, N.H. and Roberts, R.A. The peroxisome proliferator class of non-genotoxic hepatocarcinogens synergize with epidermal growth factor to promote clonal expansion of initiated rat hepatocytes. Carcinogenesis, 15: 2687–2694, 1994.

    Article  CAS  Google Scholar 

  83. Lake, B.G., Evans, J.G., Gray, T.J., Korosi, S.A., and North, C.J. Comparative studies on nafenopin-induced hepatic peroxisome proliferation in the rat, Syrian hamster, guinea pig, and marmoset. Toxicol. Appl. Pharmacol., 99: 148–160, 1989.

    Article  CAS  Google Scholar 

  84. Reddy, J.K. and Rao, M.S. Peroxisome proliferation and hepatocarcinogenesis. 1992.

    Google Scholar 

  85. Varanasi, U., Chu, R., Huang, Q., Castellon, R., Yeldandi, A.V., and Reddy, J.K. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. J. Biol. Chem., 271: 2147–2155, 1996.

    Article  CAS  Google Scholar 

  86. Hardwick, J.P., Song, B.J., Huberman, E., and Gonzalez, F.J. Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LA omega). Identification of a new cytochrome P-450 gene family. J. Biol. Chem., 262: 801–810, 1987.

    CAS  Google Scholar 

  87. Lee, S.S., Pineau, T., Drago, J., Lee, E.J., Owens, J.W., Kroetz, D.L., Fernandez-Salguero, P.M., Westphal, H., and Gonzalez, F.J. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell Biol., 15: 3012–3022, 1995.

    CAS  Google Scholar 

  88. Gonzalez, F.J., Fernandez-Salguero, P., Lee, S.S., Pineau, T., and Ward, J.M. Xenobiotic receptor knockout mice. Toxicol. Lett., 82–83: 117–121, 1995.

    Google Scholar 

  89. Lemberger, T. Saladin, R., Vazquez, M., Assimacopoulos, F., Staels, B., Desvergne, B., Wahli, W., and Auwerx, J. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem., 271: 1764–1769, 1996.

    Google Scholar 

  90. Issemann, I. and Green, S. Cloning of novel members of the steroid hormone receptor superfamily. J. Steroid. Biochem. Mol. Biol., 40: 263–269, 1991.

    CAS  Google Scholar 

  91. Yamada, J., Sakuma, M., Ikeda, T., and Suga, T. Activation of dehydroepiandrosterone as a peroxisome proliferator by sulfate conjugation. Arch. Biochem. Biophys., 313: 379–381, 1994.

    Article  CAS  Google Scholar 

  92. Yamada, J., Sakuma, M., Ikeda, T., Fukuda, K., and Suga, T. Characteristics of dehydroepiandrosterone as a peroxisome proliferator. Biochim. Biophys. Acta, 1092: 233–243, 1991.

    Article  CAS  Google Scholar 

  93. Frenkel, R.A., Slaughter, C.A., Orth, K., Moomaw, C.R., Hicks, S.H., Snyder, J.M., Bennett, M., Prough, R.A., Putnam, R.S., and Milewich, L. Peroxisome proliferation and induction of peroxisomal enzymes in mouse and rat liver by dehydroepiandrosterone feeding. J. Steroid. Biochem., 35: 333–342, 1990.

    Article  CAS  Google Scholar 

  94. Hayashi, F., Tamura, H., Yamada, J., Kasai, H., and Suga, T. Characteristics of the hepatocarcinogenesis caused by dehydroepiandrosterone, a peroxisome proliferator, in male F-344 rats. Carcinogenesis, 15: 2215–2219, 1994.

    Article  CAS  Google Scholar 

  95. Shibata, M., Hasegawa, R., Imaida, K., Hagiwara, A., Ogawa, K., Hirose, M., Ito, N., and Shirai, T. Chemoprevention by dehydroepiandrosterone and indomethacin in a rat multiorgan carcinogenesis model. Cancer Res., 55: 4870–4874, 1995.

    CAS  Google Scholar 

  96. Gordon, G.B., Helzlsouer, K.J., and Comstock, G.W. Serum levels of dehydroepiandrosterone and its sulfate and the risk of developing bladder cancer. Cancer Res., 51: 1366–1369, 1991.

    CAS  Google Scholar 

  97. Waxman, D.J. Role of metabolism in the activation of dehydroepiandrosterone as a peroxisome prolifera-tor. Mol. Pharmacol., 50: 67–74, 1996.

    Google Scholar 

  98. Ledwith, B.J., Johnson, T.E., Wagner, L.K., Pauley, C.J., Manam, S., Galloway, S.M., and Nichols, W.W. Growth regulation by peroxisome proliferators:opposing activities in early and late GI. Cancer Res., 56: 3257–3264, 1996.

    CAS  Google Scholar 

  99. Schulz, S. and Nyce, J.W. Inhibition of protein farnesyltransferase: a possible mechanism of tumor prevention by dehydroepiandrosterone sulfate [published erratum appears in Carcinogenesis 1995 Jan;16(1):149] [retracted by Nyce JW. In: Carcinogenesis 1995 May;16(5):1257]. Carcinogenesis, 15: 2649–2652, 1994.

    Google Scholar 

  100. Nyce, J.W. Inhibition of protein farnesyltransferase: a possible mechanism of tumor prevention for dehydroepiandrosterone sulfate [retraction of Schulz S, Nyce JW. In: Carcinogenesis 1994 Nov;15(11):2649–52]. Carcinogenesis, 16: 1257, 1995.

    Google Scholar 

  101. Peters, J.M., Zhou, Y.C., Ram, P.A., Lee, S.S.T., Gonzalez, F.J., and Waxman, D.J. Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3-beta-sulfate. Mol. Pharmacol., 50: 67–74, 1996.

    CAS  Google Scholar 

  102. Thibault, A., Cooper, M.R., Figg, W.D., Venzon, D.J., Sartor, A.O., Tompkins, A.C., Weinberger, M.S., Headlee, D.J., McCall, N.A., and Samid, D. A phase 1 and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res., 54: 1690–1694, 1994.

    CAS  Google Scholar 

  103. Samid, D., Shack, S., and Myers, C.E. Selective growth arrest and phenotypic reversion of prostate cancer cells in vitro by nontoxic pharmacological concentrations of phenylacetate. J. Clin. Invest., 91: 2288–2295, 1993.

    Article  CAS  Google Scholar 

  104. Samid, D., Rani, Z., Hudgins, W.R., Shack, S., Liu, L., Walbridge, S., Oldfield, E.H., and Myers, C.E. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria. Cancer Res., 54: 891–895, 1994.

    CAS  Google Scholar 

  105. Liu, L., Shack, S., Stetler-Stevenson, W.G., Hudgins, W.R., and Samid, D. Differentiation of cultured human melanoma cells induced by the aromatic fatty acids phenylacetate and phenylbutyrate. J. Invest. Dermatol., 103: 335–340, 1994.

    Article  CAS  Google Scholar 

  106. Stockhammer, G., Manley, G.T., Johnson, R., Rosenblum, M.K., Samid, D., and Liebennan, F.S. Inhibition of proliferation and induction of differentiation in medulloblastoma-and astrocytoma-derived cell lines with phenylacetate. J. Neurosurg., 83: 672–681, 1995.

    Article  CAS  Google Scholar 

  107. Lipschutz, J.H., Samid, D., and Cunha, G.R. Phenylacetate is an inhibitor of prostatic growth and development in organ culture. J. Urol., 155: 1762–1770, 1996.

    Article  CAS  Google Scholar 

  108. Pineau, T., Hudgins, W.R., Liu, L., Chen, L.C., Sher, T., Gonzalez, F.J., and Samid, D. Activation of a human peroxisome proliferator-activated receptor by the antitumor agent phenylacetate and its analogs. Biochem. Pharmacol., 52: 659–667, 1996.

    Article  CAS  Google Scholar 

  109. Forman, B.M., Tontonoz, P., Chen, J., Brun, R.P., Spiegelman, B.M., and Evans, R.M. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell, 83: 803–812, 1995.

    Article  CAS  Google Scholar 

  110. Yu, K., Bayona, W., Kallen, C.B., Harding, H.P., Rayera, C.P., McMahon, G., Brown, M., and Lazar, M.A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem., 270: 23975–23983, 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gonzalez, F.J. (1997). The Role of Peroxisome Proliferator Activated Receptor α in Peroxisome Proliferation, Physiological Homeostasis, and Chemical Carcinogenesis. In: Dietary Fat and Cancer. Advances in Experimental Medicine and Biology, vol 422. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2670-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2670-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3282-2

  • Online ISBN: 978-1-4757-2670-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics