Skip to main content

Comets and the Origin and Evolution of Life

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

The historical development of the study of comets and the origins of life is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden, W.C. (1929), Thomas Chrowder Chamberlin’s contributions to glacial geology. Jour. Geol., 37, 293–319.

    Article  ADS  Google Scholar 

  • Allen, C.S. (1973), Astrophysical Quantities ( The Athlone Press, London).

    Google Scholar 

  • Alvarez, W. and Muller, R.A. (1984), Evidence from crater ages for periodic impacts on the Earth. Nature, 308, 718–720.

    Article  ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Anders, E. (1989), Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–257.

    Article  ADS  Google Scholar 

  • Anders, E. and Owen, T. (1977), Mars and Earth: Origin and abundance of volatiles. Science, 198, 453–465.

    Article  ADS  Google Scholar 

  • Aumann, H.H., Gillett, F.C. Beichmann, C.A., de Jong, T., Houck, J., R. Low, F., Neugebauer, G., Walker, R.G. and Wesselius, P. (1984), Discovery of a shell around Alpha Lyrae. Astrophys. Jour. Lett., 278, L23 - L27.

    Article  ADS  Google Scholar 

  • Bailey, M.E., Clube, S.V.M., and Napier, W.M. (1990), The Origin of Comets ( Pergamon Press, Oxford ) p. 452.

    Google Scholar 

  • Barak, I. and Bar-Nun, A. (1975), The mechanism of amino acid synthesis by high temperature shock waves. Origins Life 6, 483–506.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Bar-Nun, N., Bauer, S.H., and Sagan C. (1970), Shock synthesis of amino acids in simulated primitive environments. Science, 168, 470–473.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Lazcano-Araujo, A., and Orb, J. (1981), Could life have originated in cometary nuclei? Origins Life, 11, 387–394.

    Article  ADS  Google Scholar 

  • Barrett, A.A. (1978), J. Roy. Soc. Can., 72, 81.

    ADS  Google Scholar 

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1986), The origin of the Moon and the single impact hypothesis. I. Icarus, 66, 515–535.

    Article  ADS  Google Scholar 

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1987), The origin of the Moon and the single impact hypothesis. II. Icarus, 71, 30–45.

    Article  ADS  Google Scholar 

  • Bernath, P.F., Hinkle, K.H., and Keady, J.J. (1989), Detection of C5 in the circumstellar shell of ICR+10216. Science, 244, 562–564.

    Article  ADS  Google Scholar 

  • Berzelius, J.J. (1834), Über Meteorsteine, 4. Meteorstein von Alais. Ann. Phys. Chem., 33, 113–123.

    ADS  Google Scholar 

  • Beust, H., Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1990), The)3 Pictoris circumstellar disk X. Numerical simulations of infalling evaporating bodies. Astron. Astrophys., 236, 202–216.

    ADS  Google Scholar 

  • Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, X.C., and Schutte, W. (1992), Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins Life, 22, 287–307.

    Article  Google Scholar 

  • Brown, H. (1952), Rare gases and the formation of the Earth’s atmosphere. In G.H. Kuiper (ed.), The Atmospheres of the Earth and Planets ( Chicago University Press, Chicago ), pp. 258–266.

    Google Scholar 

  • Brown, J.C. and Hughes, D.W. (1977), Tunguska’s comet and non-thermal 14C production in the atmosphere. Nature, 268, 512–514.

    Article  ADS  Google Scholar 

  • Butlerow, A. (1861), Formation sintetique d’une substance sucreé. Compt. Rend. Acad. Sci., 53, 145–147.

    Google Scholar 

  • Cameron, A.G.W. (1980), A new table of abundances of the elements in the solar system. In L.A. Ahrens (ed.), Origin and Distribution of the Elements ( Pergamon Press, New York ), pp. 125–143.

    Google Scholar 

  • Cameron, A.G.W. (1988), Origin of the solar system. Annu. Rev. Astron. Astrophys., 26, 441–472.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. and Benz, W. (1989), Possible scenarios resulting from the giant impact. Proc. Lunar Planet. Sci. Conf. XX, 715.

    Google Scholar 

  • Chamberlin, T.C. (1893), The diversity of the glacial period. Am. Jour. Sci., 45, 171–200.

    Google Scholar 

  • Chamberlin, T.C. (1894), Proposed genetic classification of Pleistocene glacial formations. Jour. Geol., 2, 517–538.

    Article  ADS  Google Scholar 

  • Chamberlin, T.C. (1896), Nomenclature of glacial formations. Jour. Geol., 4, 872–876.

    Article  Google Scholar 

  • Chamberlin, T.C. (1904), Fundamental problems of geology. Carnegie Institution of Washington Yearbook No. 2: 261–270.

    Google Scholar 

  • Chamberlin, T.C. (1911), The seeding of planets. Jour. Geol. 19, 175–178.

    Article  Google Scholar 

  • Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science, 28, 897–910.

    Article  ADS  Google Scholar 

  • Chang, S. (1979), Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life. In M. Neugebauer, D.K. Yeomans, J.C. Brandt and R.W. Hobbs (eds.), Space Missions to Comets ( NASA CP 2089, Washington, DC ), pp. 59–111.

    Google Scholar 

  • Chyba, C.F. (1987), The cometary contribution to the oceans of the primitive Earth. Nature, 330, 632–635.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1990), Impact delivery and erosion of planetary oceans in the early inner solar system. Nature, 343, 129–133.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1991), Terrestrial mantle siderophiles and the lunar impact record. Icarus, 92, 217–233.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1993), Comets in other planetary systems? Adv. Space Res. (in press). Chyba, C.F. and Sagan, C. (1987), Cometary organics but no evidence for bacteria. Nature,329 208.

    Google Scholar 

  • Chyba, C.F. and Sagan, C. (1992), Endogenous production, exgenous delivery and impact-shock synthesis of organic molecules; an inventory for the origins of life. Nature, 355, 125–132.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C. (1990), Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.

    Article  ADS  Google Scholar 

  • Chyba, C.F. Thomas, P.J., and Zahnle, K.J. (1993), The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature, 361, 40–44.

    Article  ADS  Google Scholar 

  • Clark, B.C. (1988), Primeval procreative comet pond. Origins Life, 18, 209–238. Daniel, R.M. (1992), Modern life at high temperatures. Origins Life, 22, 33–42.

    Google Scholar 

  • Davis, M., Hut, P., and Muller, R.A. (1984), Extinction of species by periodic comet showers. Nature, 308, 715–717.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1984), The cometary connection with periodic chemistry. Origins Life, 14, 51–60.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1991), Nature and history of the organic compounds in comets: An astrophysical view. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 377–427.

    Google Scholar 

  • Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. Origins Life, 21, 279–298.

    Google Scholar 

  • Donn, B.D. (1976), The study of Comets (NASA SP-393, Washington, DC).

    Google Scholar 

  • Eberhardt, P., Krankowski, D., Schutte, W., Dolder, U, Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbermann, U., Hodges, R. R., Hoffman, J.H., and Illiano, J.M. (1987), The CO and NH2 abundance in comet P/Halley. Astron. Astrophys., 187, 481–487.

    ADS  Google Scholar 

  • Encrenaz, T. and Knacke, R. (1991), Carbonaceous Compounds in Comets. In R.L. New-burn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 107–137.

    Google Scholar 

  • Everhart, E. (1969), Close encounters of comets and planets. Astrophys. Jour., 74, 735–739.

    ADS  Google Scholar 

  • Farley, J. (1977), The Spontaneous Generation Controversy: From Descartes to Oparin ( John Hopkins University Press, Baltimore).

    Google Scholar 

  • Fenton, C.L. and Fenton, M.A. (1952), Giants of Geology ( Doubleday, New York).

    Google Scholar 

  • Forterre, P. (1995), Thermoreduction, a hypothesis for the origin of prokaryotes. C.R. Acad. Sci. Paris, 318, 1–8.

    Google Scholar 

  • Gottschal, J.C. and Prins, R.A. (1991), Thermophiles: A life at elevated temperatures. Trends in Ecol. and Evol., 6, 157–161.

    Article  Google Scholar 

  • Gould, S.J. (1983), Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History (W.W. Norton, New York).

    Google Scholar 

  • Greenberg, M.J. (1983), Chemical evolution of interstellar dust — a source of prebiotic material? In C. Ponnamperuma (ed.), Comets and the Origin of Life ( Reidel, Dordrecht ), pp. 111–127.

    Google Scholar 

  • Greenberg, M.J. and Grim, R. (1986), The origin and evolution cometary nuclei and comet Halley results. In B. Battrick, E.J. Rolfe and R. Reinhard (eds.), 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 255–263.

    Google Scholar 

  • Grieve, R.A.F. and Robertson, P.B. (1979), The terrestrial cratering record I. Current status of observations. Icarus, 38, 212–219.

    Article  ADS  Google Scholar 

  • Grün, E., Bar-Nun, A., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., Hesselbarth, R, Hsiung, R, Keller, H.U., Klinger, J., Knölker, J., Kochan, H., Kohl, H., Kölzer, G., Krankowsky, D., Lämmerzahl, R, Mauersberger, K., Neukum, G., Oehler, A., Ratke, L., Roessler, K., Schewm, G., Spohn, G., Stöffler, D. and Thiel, K. (1991), Laboratory simulation of cometary processes: Results from first KOSI experiments. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 277–297.

    Google Scholar 

  • Han, T.-M. and Runnegar, B. (1992 i Megascopic eukaryotic algae from the 2.1-billionyear-old Negaunee Iron-formation, Michigan. Science, 257, 232–235.

    Google Scholar 

  • Hayashi, C., Nakasawa, K. and Nakasawa, Y. (1985), Formation of the solar system. In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II ( University of Arizona Press, Tucson ), pp. 1100–1153.

    Google Scholar 

  • Hinkle, K.H., Keady, J.J., and Bernath, P.F. (1988), Detection of C3 in the interstellar shell of IRC+10216. Science, 241, 1319–1320.

    Article  ADS  Google Scholar 

  • Hobbs, L.M., Vidal-Majdar, A., Ferlet, R., Albert, C.E. and Gry, C. (1985), The gaseous component of the disk around Beta Pictoris. Astrophys. Jour. Lett., 293, L29 - L33.

    Article  ADS  Google Scholar 

  • Holland, H.D. (1994), Early Proterozoic atmospheric change. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84, Columbia University Press, New York, pp. 237–244.

    Google Scholar 

  • Hollis, J.M., Snyder, L.E., Suenram, R.D. and Lovas, F.J. (1980), A search for the lowest energy conformer of interstellar glycine. Astrophys Jour., 241, 1001–1006.

    Article  ADS  Google Scholar 

  • Holm, N.G. (1992), Marine hydrothermal systems and the origin of life. Origins Life, 22. Special issue.

    Google Scholar 

  • Hong, J. H. and Becker, R. S. (1979), Hydrogen atom initiated chemistry. J. Mol. Evol., 13, 15–26.

    Article  Google Scholar 

  • Hoyle, F. and Wickramasinghe, C. (1984), From Grains to Bacteria ( University College Cardiff Press, Bristol).

    Google Scholar 

  • Hsü, K.J. (1980), Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature, 285, 201–203.

    Article  ADS  Google Scholar 

  • Huber, R., Kurr, M., Jannasch, H.W. and Stetter, K.O. (1989), A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110° C. Nature, 342, 833834.

    Google Scholar 

  • Huebner, W.F. (1987), First polymer in space identified in comet Halley. Science, 237, 628–630.

    Article  ADS  Google Scholar 

  • Hunten, D.M. (1993), Atmospheric evolution of the terrestrial planets. Science, 259, 915920.

    Google Scholar 

  • Ibandov, K.I., Rahmonov, A.A. and Bjasso, A.S. (1991). Laboratory simulation of cometary structures. In R.L. Newbum, M. Neugebauer and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 299–311.

    Google Scholar 

  • Ip, W.H. and Fernandez, J.A. (1988), Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus, 74, 47–61.

    Article  ADS  Google Scholar 

  • Irvine, W.M., Leschine, S.N. and Schloerb, F.P. (1980), Thermal history, chemical composition and relationship of comets to the origin of life. Nature, 283, 748–749.

    Article  ADS  Google Scholar 

  • Joss, P.C. (1974), Are stellar surface heavy-elements abundances systematically enhanced? Astrophys. Jour., 191, 771–774.

    Article  ADS  Google Scholar 

  • Kamminga, H. (1988), Historical perspective: the problem of the origin of life in the context of developments in biology. Origins Life, 18, 1–11.

    Article  ADS  Google Scholar 

  • Kandler, O. (1992), Where next with the archaebacteria? Biochem. Soc. Symp. 58, 195–207.

    Google Scholar 

  • Kandler, O. (1994), The early diversification of life. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84. ( Columbia University Press, New York ), pp. 152–160.

    Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s earliest atmosphere. Origins Life, 20, 199–231.

    Article  Google Scholar 

  • Kasting. J.F. (1993), Earth’s earliest atmosphere. Science, 259, 920–926.

    Article  ADS  Google Scholar 

  • Kerr, R.A. (1985), Periodic extinctions and impacts challenged. Science, 227, 1451–1453.

    Article  ADS  Google Scholar 

  • Khare, B.N., Sagan, C. Thompson, W.R., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W., Shrader, S., Ogina, H., Willingham, T.O., and Nagy, B. (1984), The Organic aerosols of Titan. Adv. Space Res., 4, (12) 59–68.

    Article  Google Scholar 

  • Kissel, J. and Krueger, F.R. (1987), The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature, 326, 755–760.

    Article  ADS  Google Scholar 

  • Knoll, A.H. and Barghoorn, E.S. (1977), Archean microfossils showing cell division from the Swaziland system of South Africa. Science, 198, 396–398.

    Article  ADS  Google Scholar 

  • Kondo, Y. and Bruhweiler, F.C. (1985), IUE observations of Beta Pictoris: an IRAS candidate for a proto-planetary system. Astrophys. Jour. Lett., 391, L1 - L5.

    Article  ADS  Google Scholar 

  • Korth, A., Marconi, M.L., Mendis, D.A., Krueger, F.R., Richter, K.A., Lin, R.P., Mitchell, O.L., Andersen, K.A., Carlson, C.W., Réme, H., Savaud, J.A., and d’Uston, C. (1989), Probable detection of organic-dust-borne aromatic C3H3 ions in the coma of comet Halley. Nature, 337, 53–55.

    Article  ADS  Google Scholar 

  • Kresâk, L. (1978), The Tunguska object: A fragment of comet Encke? Bull. Astron. Inst. Czechosl., 29, 129–134.

    ADS  Google Scholar 

  • Krueger, F.R. and Kissel, J. (1989), Biogenesis by cometary origin: Thermodynamical aspects of self-organization. Origins Life, 19, 87–93.

    Article  Google Scholar 

  • Lagrange, A.M., Ferlet, R., and Vidal-Majdar, A. (1987), The Beta Pictoris circumstellar disk IV. Redshifted UV lines. Astron. Astrophys., 173, 289–292.

    ADS  Google Scholar 

  • Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1988), The ß Pictoris circumstellar disk VI. Evidence for material falling on to the star. Astron. Astrophys., 190, 275–282.

    ADS  Google Scholar 

  • Langevin, Y., Kissel, J., Berhaus, J.L., and Chassefiere, E. (1987), First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA (Vega 1) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes. Astron. Astrophys., 187, 761–766.

    ADS  Google Scholar 

  • Lazcano, A. (1992a), Origins of life: The historical development of recent theories. In L. Margulis and L. Olendzenski (eds.), Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth (MIT Press, Cambridge), pp. 57–59. Lazcano, A. (1992b), La Chispa de la Vida ( Pangea, México ).

    Google Scholar 

  • Lazcano, A. (1993), The significance of ancient paralogous genes in the study of the early stages of microbial evolution. In R. Guerrero and C. Pedrds-Alios (eds.). Proceedings of the 6th International Symposium of Microbial Ecology (Soc. Catalana de Biologia, Barcelona ), pp. 559–562.

    Google Scholar 

  • Lazcano, A. (1994a), The transition from non-living to living. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84 ( Columbia University Press, New York ), pp. 60–69.

    Google Scholar 

  • Lazcano, A. (1994b), The RNA world, its predecessors and descendants. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84 ( Columbia University Press, New York ), pp. 70–80.

    Google Scholar 

  • Lazcano, A., Ord, J., and Miller, S.L. (1983), Primitive Earth environments: Organic syn- thesis and the origin and early evolution of life. Precambrian Res., 20, 259–282.

    Article  Google Scholar 

  • Lazcano, A., Fox, G.E., and Ord, J. (1992), Life before DNA: the origin and evolution of Early Archean cells. In R.P. Mortlock (ed.) The Evolution of Metabolic Function ( CRC Press, Boca Raton ), pp. 237–295.

    Google Scholar 

  • Lazcano-Araujo, A. and Oro, J. (1981), Cometary material and the origins of life on Earth. In C. Ponnamperuma (ed.) Comets and the Origins of Life ( Reidel, Dordrecht ), pp. 191–225.

    Chapter  Google Scholar 

  • Lederberg, J. (1992), Foreword to L. Margulis Symbiosis in Cell Evolution: Microbial communities in the Archean and Proterozoic Eons ( Freeman, New York), pp. xv-xvi.

    Google Scholar 

  • Lerner, N.R., Peterson, E., and Chang, S. (1991), Meteoritic amino acids from cometary/interstellar precursors. Comets and the Origins and Evolution of Life. Abstracts ofa Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, p. 19.

    Google Scholar 

  • Levine, J.S., Augustsson, T.R., Boughner, R.E., Natajaran, M., and Sacks, L.J. (1980), Comets and the photochemistry of the paleoatmosphere. In C. Ponnamperuma (ed.) Comets und the Origin of Life ( Reidel, Dordrecht ), pp. 161–190.

    Google Scholar 

  • Lewis, J.S. (1974), Volatile element influx on Venus from cometary impacts. Earth Planet. Sci. Lett., 22, 239–244.

    Article  ADS  Google Scholar 

  • Löb, W. (1913), Über das Verhalten des Formamids unter der Wirkung der stillen Entladung. Ein Beilrag zur Frage der Stickstoff-Assimilation. Berichte der Deutschen Chem. Gessellschaft, 46, 684–697.

    Article  Google Scholar 

  • MacMillan, W.D. (1929), The field of cosmogony. Jour. Geol. 37, 341–356.

    Article  ADS  Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988), Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  ADS  Google Scholar 

  • Marcus, J.N. and Olsen, M.A. (1991), Biological implications of organic compounds in comets. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 439–462.

    Google Scholar 

  • Matthews, C.N. and Ludicky, R. (1986), The dark nucleus of comet Halley: Hydrogen cyanide polymers. In B. Battrick, E.J. Rolfe, and R. Reinhard (eds), 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 273–277.

    Google Scholar 

  • McKay, C.P., Boruki, W.R., Kujiro, D.R., and Church, F. (1989), Shock production of organics during cometary impacts. Lunar Planet. Sci. Conf. XX, 671–672.

    ADS  Google Scholar 

  • McKinnon, W.B. (1989), Impacts giveth and impacts taketh away. Nature, 338, 465–466.

    Article  ADS  Google Scholar 

  • Melosh, J. and Vickery, A. (1989), Impact erosion of the primordial Martian atmosphere. Nature, 338, 487–489.

    Article  ADS  Google Scholar 

  • Miller, S.L. (1957), The mechanism of synthesis of amino acids by electric discharges. Biochem. Biophys. Acta., 23, 480–487.

    Article  Google Scholar 

  • Miller, S.L. (1974), The first laboratory synthesis of organic compounds under primitive Earth conditions. In J. Neyman (ed.), The Heritage of Copernicus: Theories “Pleasing to the Mind” ( MIT Press, Cambridge ), pp. 228–242.

    Google Scholar 

  • Miller, S.L. (1991a), The relative importance of prebiotic synthesis on the Earth and input from comets and meteorites. In R.A. Wharton, D.T. Andersen, Sara E. Bzik, and J.D. Rummel (eds.). Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life NASA Conference Publication No. 3129 (Washington DC), p. 105.

    Google Scholar 

  • Miller, S.L. (1991b), Comets and meteorites were not a significant source of organic compounds on the primitive Earth. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, pp. 22–23.

    Google Scholar 

  • Miller, S.L. and Bada, J.L. (1988), Submarine hot springs and the origin of life. Nature, 334, 609–611.

    Article  ADS  Google Scholar 

  • Miller, S.L. and Orgel, L.E. (1974), The Origins of Life on Earth (Prentice Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Miller, S.L. and Urey, H.C. (1959), Organic compound synthesis on the primitive Earth. Science, 130, 245–252.

    Article  ADS  Google Scholar 

  • Mitchell, D.L., Lin, R.P, Anderson, K.A., Carlson, C.W., Curtis, D.W., Korth, A., Réme, H., Sauvard, J.A., d’Uston, C., and Mendis, D.A. (1987), Evidence for chain molecules enriched in carbon, hydrogen and oxygen in comet Halley. Science, 237, 626–628.

    Article  ADS  Google Scholar 

  • Moulton, F.R. and Chamberlin, T.C. (1900), Certain attempts to test the nebular hypothesis. Science 11, 311–312.

    Google Scholar 

  • Mukhin, L.M., Gerasimov, M.V., and Safonova, E.N. (1989), Origin of precursors of organic molecules during evaporation of meteorites and rocks. Adv. Space Res., 9, 95–97.

    Article  ADS  Google Scholar 

  • Muller, R.A. (1985), Evidence for a solar companion star. In M.D. Papagiannis (ed), The Search for Extraterrestrial Life: Recent Developments ( Reidel, Dordrecht ), pp. 233–243.

    Chapter  Google Scholar 

  • Navarro-Gonzalez, R., Castillio-Rojas, S., and Negron-Mendoza, A. (1991), Experimental and computational study of the radiation-induced decomposition of formaldehyde. Implications to cometary nuclei. Origins Life, 21, 39–49.

    Article  Google Scholar 

  • Negrdn-Mendoza, A., Chacdn, E., Navarro-Gonzalez, R., Draganic, Z.D., and Draganic, I.G. (1992), Radiation-induced syntheses in cometary simulated models. Adv. Space Res. 12: 63–66.

    Article  ADS  Google Scholar 

  • Oberbeck, V.R. and Aggarwal, H. (1992), Comet impacts and chemical evolution of the bombarded Earth. Origins Life, 21, 317–338.

    Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1989a), Impacts and the origin of life. Nature, 339, 434.

    Article  ADS  Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1989b), Estimates of the maximum time require to originate life. Origins Life, 19, 549–560.

    Article  Google Scholar 

  • Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989), The role of cometary particle coalescence in chemical evolution. Origins Life, 19, 35–55.

    Google Scholar 

  • O’Dell, C.R., Wen, Z., and Hu, X. (1993), Discovery of new objects in the Orion Nebula on HST images: shocks, compact sources and protoplanetary disks. Astrophys. Jour.(in press).

    Google Scholar 

  • Oparin, A.I. (1924), Proiskhozhdenie Zhizni (Moskovskii Rabochii, Moscow). Translated and published as an Appendix in J.D. Bernal ( 1967 ). The Orgin of Life (Weidenfeld and Nicolson, London ).

    Google Scholar 

  • Oparin, A.I. (1938), The Origin of Life ( Macmillan, New York).

    Google Scholar 

  • Ord, J. (1960), Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Comm., 2, 407–412.

    Article  Google Scholar 

  • Ord, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.

    Article  ADS  Google Scholar 

  • Ord, J. (1963), Synthesis of organic compounds by high-energy electrons. Nature, 197, 971–974.

    Article  ADS  Google Scholar 

  • Ord, J. and Mills, T. (1989), Chemical evolution of primitive solar system bodies. Adv. Space Res., 9, 105–120.

    ADS  Google Scholar 

  • Ord, J., Kimball, A., Fritz, R., and Master, F. (1959), Amino acid synthesis from formaldehyde and hydroxylamine. Arch. Biochem. Biophys., 85, 115–130.

    Article  Google Scholar 

  • Ord, J., Holzer, G., and Lazcano-Araujo, A. (1980), The contribution of cometary volatiles to the primitive Earth. Life Sciences and Space Research XVIII, pp. 67–82.

    Google Scholar 

  • Ord, J., Miller, S.L., and Lazcano, A. (1990), The origin and early evolution of life on Earth. Annu. Rev. Earth Planet. Sci., 18, 317–356.

    Article  ADS  Google Scholar 

  • Ord, J., Mills, T., and Lazcano, A. (1992a), The cometary contribution to prebiotic chemistry. Adv. Space Res., 12, 33–41.

    ADS  Google Scholar 

  • Ord, J., Mills, T., and Lazcano, A. (1992b), Comets and the formation of biochemical compounds–a review. Origins Life, 21 267–277.

    Google Scholar 

  • Ord, J. Mills, T., and Lazcano, A. (1995), Comets and life in the universe. Adv. Space Res.,15 81–90.

    Google Scholar 

  • Owen, T., Bar-Nun, A., and Kleinfeld, I. (1992), Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature, 358, 43–46.

    Article  ADS  Google Scholar 

  • Pace, N.R. (1991), Origin of life—Facing up to the physical environment. Cell, 65, 531–533.

    Article  Google Scholar 

  • Pollack, J.P. and Yung, Y.L. (1980), Origin and evolution of planetary atmospheres. Ann. Rev. Earth Planet. Sci., 8, 425–487.

    Article  ADS  Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1984), Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature, 308, 709–712.

    Article  ADS  Google Scholar 

  • Raup, D.M. (1986), The Nemesis Affair: A Story of the Death of the Dinosaurs and the Ways of Science (W.W. Norton, New York).

    Google Scholar 

  • Raup, D.M. (1988), Extinction in the geological past. In D.E. Osterbrock and P.H. Raven (eds.), Origins and Extinctions ( Yale University Press, New Haven ), pp. 109–119.

    Google Scholar 

  • Raup, D.M. and Sepkoski, J. Jr. (1984), Periodicity of extinctions in the geological past. Proc. Natl. Acad. Sci. USA, 81, 801–805.

    Article  ADS  Google Scholar 

  • Sagan, C., Thompson, W.R., and Khare B.N. (1992), A laboratory for prebiological organic chemistry. Accounts of Chemical Research 25, 286–292.

    Article  Google Scholar 

  • Schopf, W.J. ed (1983), The Earth’s Earliest Biosphere: its origin and evolution ( Princeton University Press, Princeton, NJ ).

    Google Scholar 

  • Schopf, W.J. (1994), The oldest known records of life: Early Archean stromatolites, micro-fossils, and organic matter. In S Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84. Columbia University Press, New York, pp. 193–206.

    Google Scholar 

  • Schopf, W.J. and Packer, B.M. (1987), Early Archean (3.3 billion to 3.5 billion years-old) microfossils: New evidence of ancient microbes. Science, 237, 70–73.

    Article  ADS  Google Scholar 

  • Schutte, W.A., Allamandola, L.J., and Sandford, S.A. (1992), Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: production and analysis of complex organic molecules. Adv. Space Res., 12, 47–51.

    Article  ADS  Google Scholar 

  • Schwartz, R.D. and James, P.B. (1984), Periodic mass extinctions and the Sun’s oscillation about the galactic plane. Nature, 308, 712–713.

    Article  ADS  Google Scholar 

  • Sill, G.T. and Wilkening, L.L. (1978), Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus, 33, 13–22.

    Article  ADS  Google Scholar 

  • Sleep, N.H., Zanhle, K.J. Kasting, J.F., and Morowitz, H.J. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

    Article  ADS  Google Scholar 

  • Slettebak, A. (1975), Some interesting bright southern stars of early type. Astrophys. Jour., 197, 137–138.

    Article  ADS  Google Scholar 

  • Smith, B.A. and Terrile, R.J. (1984), A circumstellar disk around ß Pictoris. Science, 226, 1421–1424.

    Article  ADS  Google Scholar 

  • Stetter, K.O. (1994), The lesson of Archaebacteria. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84. Columbia University Press. New York, pp. 143–151.

    Google Scholar 

  • Strazzulla, G. and Johnson, R.E. (1991), Irradiation effects on comets and cometary debris. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I—II ( Dordrecht, Boston ), 243–275.

    Chapter  Google Scholar 

  • Stribling, R. and Miller, S.L. (1987), Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive oceans. Origins Lift, 17, 261–273.

    Article  ADS  Google Scholar 

  • Strom, K., Strom, S.E., Edwards, S., Cabrit, S., and Skrutskie, M.F. (1989), Circumstellar material associated with stellar-type pre-main sequence stars: a possible constraint on the timescale for planet building. Astron. J., 97, 1451–1470.

    Article  ADS  Google Scholar 

  • Suess, H. and Urey, H.C. (1956), Abundances of the elements. Rev. Mod. Phys., 28, 53–62.

    Article  ADS  Google Scholar 

  • Theirstein, H.R. (1980), Cretaceous oceanic catastrophism. Paleobiology, 6, 244–247.

    Google Scholar 

  • Thomas, P.J. (ed.) (1992), Comets and the Origin and Evolution of Life. Origins Life,21. Special issue.

    Google Scholar 

  • Urey, H.C. (1957), The origin of tektites. Nature, 179, 556–557.

    Article  ADS  Google Scholar 

  • Urey, H.C. (1973), Cometary collisions and geological periods. Nature, 242, 32–33.

    Article  ADS  Google Scholar 

  • Vidal-Majdar, A., Hobbs, L.M., Ferlet, R., Gry, C., and Albert, C.E. (1986), The circumstellar gas cloud around Beta Pictoris. H. Astron. Astrophys., 167, 325–332.

    ADS  Google Scholar 

  • von Helmholtz, H. (1871), The Origin of the Planetary System. In Selected writings of Hermann von Helmholtz (Wesleyan University Press, 1971, p. 284). Quotation and reference are from J. Farley (1977). The Spontaneous Generation Controversy: From

    Google Scholar 

  • Descartes to Oparin (Johns Hopkins University Press, Baltimore), p. 142.

    Google Scholar 

  • Walker, J.C.G. (1986), Impact erosion of planetary atmospheres. Icarus, 68, 87–89.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets. In Proceedings of the 6th Lunar Science Conference ( Lunar and Planetary Institute, Houston ), pp. 1539–1561.

    Google Scholar 

  • Wetherill, G.W. (1990), Formation of the Earth. Annu. Rev. Earth Planet. Sci., 18, 205–256.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1976), A speculation about comets and the Earth. Mem. Soc. Royale Sci. Liege, 9, 101–111.

    ADS  Google Scholar 

  • Whitmire, D.P. and Jackson, A.A. (1984), Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713–715.

    Article  ADS  Google Scholar 

  • Woese, C.R. (1987), Bacterial evolution. Microbiol. Rev., 51, 221–271.

    Google Scholar 

  • Wöhler, M.F. (1858), Über die Bestandteile des Meteorsteines von Kaba in Ungarn. Sitzber. Akad. Wiss. Wien, Math-Naturwiss. KI., 33, 205–209.

    Google Scholar 

  • Wöhler, M.F. and Homes, M. (1859), Die organische Substanz im Meteorsteine von Kaba. Sitzber. Akad. Wiss. Wein, Math- Naturwiss. KI., 34, 7–8.

    Google Scholar 

  • Zahnle, K. and Dones, L. (1992), Impact origin of Titan’s atmosphere in Proceedings Symposium on Titan, Toulouse, France. (ESA SP-338), 14–25.

    Google Scholar 

  • Zahnle, K. and Grinspoon, D. (1990), Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature, 348, 157–159.

    Article  ADS  Google Scholar 

  • Zhao, M. and Bada, J.L. (1989), Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Steuns Klint, Denmark. Nature, 339, 463–465.

    Article  ADS  Google Scholar 

  • Zhao, M. and Bada, J.L. (1991), Limitations on impact delivery of organics to the Earth based on extraterrestrial amino acids in K/T boundary sediments. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, 41.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oró, J., Lazcano, A. (1997). Comets and the Origin and Evolution of Life. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics